Influence of Aerodynamic Load on Fatigue Life of Mooring Lines of Floating Wind Turbines

Expand
  • 1. College of Civil Engineering, Hunan University, Changsha 410082, China; 2. China Machinery International Engineering Design & Research Institute Co., Ltd., Changsha 410082, China; 3. XEMC Windpower Co., Ltd., Xiangtan 411102, Hunan, China

Abstract

Based on a coupled analytical model of floating wind turbine, an investigation into the influences of aerodynamic load and wind turbulence intensity on the fatigue life of mooring lines was performed by using the Miner’s cumulative damage theory, the rain flow method and the T-N curves. The results of the fatigue analyses of mooring lines show that the including of the turbulent wind loads causes an 80% decrease in the fatigue life of mooring lines, indicating the importance of choosing a reasonable turbulent wind model; in sea states with wind speed which is close to the rated wind speed of the wind turbine, aerodynamic loads can greatly amplify the horizontal displacement of the platform, thus increase the tension of mooring lines, and decrease the fatigue life of mooring lines; the interaction among the responses can worsen the fatigue damage of mooring lines. This study can guide the fatigue design of mooring lines.

Cite this article

DENG Lu1,HU Binfen1,WU Songxiong1,HUANG Minxi2,SONG Xiaoping3 . Influence of Aerodynamic Load on Fatigue Life of Mooring Lines of Floating Wind Turbines[J]. Journal of Shanghai Jiaotong University, 2018 , 52(6) : 743 -749 . DOI: 10.16183/j.cnki.jsjtu.2018.06.016

References

[1]单桂敏. 新型深水系泊系统疲劳破坏分析[D].天津: 天津大学建筑工程学院, 2010. SHAN Guimin. Fatigue failure analysis of a new-type of deepwater mooring systems[D].Tianjing: Tianjin University, 2010. [2]INSTITUTE A P. Recommended practice for design and analysis of stationkeeping systems for floating structures: Exploration and production department.API Recommended Practice 2SK (RP 2SK)[S].3th ed.USA: American Petroleum Institute, 2005: 83. [3]VERITAS D N. Offshore Standard DNV-OS-E301: Position Mooring [S]. Olso: Det Norske Verias, 2008: 152. [4]宋宪仓, 王树青, 杜君峰. 二阶差频力对半潜式平台系泊锚链疲劳损伤影响[C]∥第十七届中国海洋 (岸) 工程学术讨论会论文集 (上).南宁: 中国海洋工程学会, 2015: 292-297. SONG Xiancang, WANG Shuqing, DU Junfeng. Effects of second-order hydrodynamic forces on fatigue damage of mooring lines of semi-submersible platforms[C]∥Proceedings of the 17th Symposium of China Ocean (Coast) Engineering (Volume 1), 2015: 292-297. [5]康海贵, 田茂金, 龙丽吉, 等. 基于谱分析方法的海上风机支撑结构疲劳寿命分析[J].可再生能源, 2013, 31(7): 41-44. KANG Haigui, TIAN Maojin, LONG Liji, et al. Spectral-based fatigue analysis of support structure for offshore turbines[J]. Renewable Energy Resources, 2013, 31(7): 41-44. [6]莫继华, 何炎平, 李勇刚, 等. 近海风电机组单桩式支撑结构疲劳分析[J]. 上海交通大学学报, 2011, 45(4): 565-569. MO Jihua, HE Yanping, LI Yonggang, et al. Fatigue analysis of offshore wind turbine mono-pile support structure[J]. Journal of Shanghai Jiao Tong Universtiy, 2011, 45(4): 565-569. [7]VERITAS D N. Design of offshore wind turbine structures: DNV-OS-J101 [S]. Olso: Det Norske Verias, 2010: 265. [8]VERITAS D N. Environmental conditions and environmental loads: DNV-RP-C205[S]. Olso: Det Norske Verias, 2010: 138. [9]FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press, 1993. [10]王佳颖, 张世联, 徐伟, 等.超期服务浮式平台锚链疲劳寿命安全评估[J].上海交通大学学报, 2008, 42(11): 1888-1891. WANG Jiaying, ZHANG Shilian, XU Wei, et al. Safety assessment for fatigue life of floating platform mooring[J]. Journal of Shanghai Jiao Tong Universtiy, 2008, 42(11): 1888-1891. [11]BAYATI I, JONKMAN J, ROBERTSON A, et al. The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine[C]∥Journal of Physics: Conference Series. Copenhagen: IOP Publishing Ltd., 2014: 012094. [12]COMMISSION I E. Design requirements for offshore wind turbines: IEC 61400-3[S]. Geneva: The International Electrotechnical Commission, 2009: 144. [13]VERITAS D N. Design of floating wind turbine structures: DNV-OS-J103[S]. Olso: Det Norske Verias, 2013: 57. [14]MORIARTY P J, HANSEN A C. AeroDyn theory manual[M]. Denver: Citeseer, 2005. [15]WIND GL. Guideline for certification of offshore wind turbines[S]. Berlin: GL Renewables Certification, 2005: 97. [16]JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, Denver: NREL, 2009. [17]JONKMAN J M. Definition of the floating system for phase IV of OC3[R]. NREL/TP-500-47535, Denver: NREL, 2010. [18]ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase II of OC4[R]. NREL/TP-5000-60601, Denver: NREL, 2014. [19]周楠, 刘波, 张阳, 等. 内转塔式 FPSO系泊系统疲劳分析研究[C]∥第三届中国海洋工程技术年会论文集. 宁波: 中国海洋工程学会, 2014: 247-252. ZHOU Nan, LIU Bo, ZHANG Yang, et al. Fatigue analysis on mooring systems of internal turret FPSO[C]∥Proceedings of the 3rd Annual Meeting of China Ocean Engineering and Technology. Ningbo: China Marine Engineering Society, 2014: 247-252. [20]盛振国, 任慧龙, 甄春博, 等. 基于时域载荷的海上风机基础结构疲劳分析[J]. 华中科技大学学报: 自然科学版, 2014, 42(4): 96-100. SHENG Zhenguo, REN Huilong, ZHEN Chunbo, et al. Fatigue analysis for offshore wind turbine[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(4): 96-100.
Options
Outlines

/