Numerical Simulation of Cavitating Flow Around an Under-Loading Propeller

Expand
  • a. School of Naval Architecture, Ocean and Civil Engineering; b. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-06-28

Supported by

 

Abstract

Numerical simulation of under-loading propeller cavitation and hydrodynamic thrust and torque coefficients were carried out by calculating the Case 2.3.3 of propeller model of Potsdam Propeller Test Case 2011. The research was done through discussion on different meshing patterns, meshing densities, cavitation parameters based on the homogeneous mixture flow model and the ZGB and Sauer cavitation models. It is shown that the correct calculation of thrust and torque coefficients on the under-loading condition needs finer meshing; the methods put forward here can predict correctly KT and KQ, tip vortex, cavities on both suction side and pressure side; the spiral mesh is a promising gridding method to succeed in capturing tip vortex cavitation; the nucleation site volume fraction and the bubble number density are two parameters which have important effects on the computed results.

Cite this article

FU Huiping,LI Jie . Numerical Simulation of Cavitating Flow Around an Under-Loading Propeller[J]. Journal of Shanghai Jiaotong University, 2018 , 52(6) : 631 -635 . DOI: 10.16183/j.cnki.jsjtu.2018.06.001

References

[1]ARNDT R, PENNINGS P, BOSSCHERS J, et al. The singing vortex[J]. Interface Focus, 2015, 5(5): 1-11. [2]ZHANG Lingxin, ZHANG Na, PENG Xiaoxing, et al. A review of studies of mechanism and prediction of tip vortex cavitation inception[J]. Journal of Hydrodynamics, 2015, 27(4): 488-495. [3]HSIAO C T, CHAHINE G L. Scaling of tip vortex cavitation inception noise with a bubble dynamics model accounting for nuclei size distribution[J]. Journal of Fluids Engineering, 2005, 127(1): 55-65. [4]HSIAO C T, CHAHINE G L. Scaling of tip vortex cavitation inception for a marine open propeller[C]∥Proceedings of the 27th Symposium on Naval Hydrodynamics. Seoul, Korea: [s.n.], 2008. [5]HSIAO C T, CHAHINE G L. Effect of a propeller and gas diffusion on bubble nuclei distribution in a liquid[J]. Journal of Hydrodynamics, 2012, 24(6): 809-822. [6]辛公正. 桨叶几何对梢涡空泡起始影响及其机理研究[D]. 无锡: 中国船舶科学研究中心, 2014. XIN Gongzheng. The investigation of the effect of blade geometry on tip vortex cavitation inception and its mechanism[D]. Wuxi: China Ship Scientific Research Center, 2014. [7]熊鹰, 韩宝玉, 时立攀. 螺旋桨梢涡空泡初生及尺度效应研究[J]. 船舶力学, 2013, 17(5): 451-459. XIONG Ying, HAN Baoyu, SHI Lipan. Study on prediction of tip-vortex cavitation inception[J]. Journal of Ship Mechanics, 2013, 17(5): 451-459. [8]韩宝玉, 熊鹰, 刘志华. 梢涡空化CFD 数值方法[J]. 哈尔滨工程大学学报, 2011, 32(6): 702-707. HAN Baoyu, XIONG Ying, LIU Zhihua. Numerical study of tip vortex cavitation using CFD method[J]. Journal of Harbin Engineering University, 2011, 32(6): 702-707. [9]JI Bin, LUO Xianwu, PENG Xiaoxing. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil[J]. Journal of Hydrodynamics, 2013, 25(4): 510-519. [10]LIU Zhihui, WANG Benlong, PENG Xiaoxing, et al. Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear k-ε turbulence model[J]. Journal of Hydrodynamics, 2016, 28(2): 227-237. [11]冯学梅, 鲁传敬, 吴琼, 等. 均匀流场中螺旋桨空泡数值模拟[J]. 中国造船, 2012, 53(3): 18-27. FENG Xuemei, LU Chuanjing, WU Qiong, et al. Numerical simulation of propeller cavitation in uniform flow[J]. Shipbuilding of China, 2012, 53(3): 18-27. [12]胡子俊, 张楠, 姚惠之, 等. 涡判据在孔腔涡旋流动拓扑结构分析中的应用[J]. 船舶力学, 2012, 16(8): 839-846. HU Zijun, ZHANG Nan, YAO Huizhi, et al. Vortex identification in the analysis on the topology structure of vortical flow in cavity[J]. Journal of Ship Mechanics, 2012, 16(8): 839-846.
Options
Outlines

/