In order to improve the fitting quality, firstly, contours are extracted from scanning data points to fit Fourier series, then unit tangent and binormal can be got at any point based on Frenet frame of curve theory, and the objective function of fitting quality referencing Hausdorff distance can be constructed. The global optimal transform parameter can be found based on differential evolution. Effectiveness of the method is demonstrated by one practical door-fitting example. Results indicate that the proposed method can significantly improve the fitting consistency and improve automobile dimension quality.
HENG Dezheng1,YANG Jun2,LI Zhimin1,JIN Aijun2,JIN Sun1
. Automobile Door Fitting Based on Frenet Frame[J]. Journal of Shanghai Jiaotong University, 2018
, 52(3)
: 318
-323
.
DOI: 10.16183/j.cnki.jsjtu.2018.03.010
[1]FAINBERG Z, ZUSSMAN E. Even fitting closed curves: 2-D algorithm and assembly applications[J]. Journal of Manufacturing Science and Engineering, 1999, 121(2): 265-272.
[2]KHORZAD D, SHI J, HU S J, et al. Optimization of multiple panel fitting in automobile assembly[J]. Transactions of North American Manufacturing Research Institution of SME, 1995, 23: 241-246.
[3]ZHU W F, ZHOU J Q. Optimal method for auto-body closure panel fitting using Hausdorff distance criteria[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(9/12): 1019-1029.
[4]PEREZ-GARCIA A, AYALA-RAMIREZ V, SANCHEZ-YANEZ R E, et al. Monte carlo evaluation of the hausdorff distance for shape matching[C]∥Iberoamerican Congress on Pattern Recognition. Heidelberg, Berlin: Springer Berlin Heidelberg, 2006: 686-695.
[5]罗来军, 来新民, 周志强, 等. 车身复杂曲线匹配优化问题研究[J]. 机械设计, 2002, 19(6): 10-14.
LUO Laijun, LAI Xinmin, ZHOU Zhiqiang, et al.Study on the problems of matching optimization for complicated body curve of vehicle profile[J]. Machine Design, 2002, 19(6): 10-14.
[6]许川, 吴昊, 王华, 等. 基于高斯映射的多误差源复杂结构匹配分析与优化[J]. 上海交通大学学报, 2013, 47(5): 840-845.
XU Chuan, WU Hao, WANG Hua, et al. Matching optimization analysis of complex structure with multiple error sources based on Gaussian mapping[J]. Journal of Shanghai Jiao Tong University, 2013, 47(5): 840-845.
[7]CHEN J, LEUNG M K, GAO Y. Noisy logo recognition using line segment Hausdorff distance[J]. Pattern Recognition, 2003, 36(4): 943-955.
[8]RODRIGUEZ W, LAST M, KANDEL A, et al. 3-dimensional curve similarity using string matching[J]. Robotics and Autonomous Systems, 2004, 49(3): 165-172.
[9]李庆扬, 王能超, 易大义.数值分析[M].北京, 清华大学出版社, 2008: 83-84.
[10]BROOKS E B, THOMAS V A, WYNNE R H, et al. Fitting the multitemporal curve: A Fourier series approach to the missing data problem in remote sensing analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3340-3353.
[11]ENDERS W, LEE J. A unit root test using a Fourier series to approximate smooth breaks[J]. Oxford Bulletin of Economics and Statistics, 2012, 74(4): 574-599.
[12]ALT H, SCHARF L. Computing the Hausdorff distance between curved objects[J]. International Journal of Computational Geometry & Applications, 2008, 18(4): 307-320.
[13]GAO X, WANG H, CHEN G. Fitting optimization based on weighted Gaussian imaging method for auto body taillight assembly[J]. Assembly Automation, 2014, 34(3): 255-263.
[14]QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE transactions on Evolutionary Computation, 2009, 13(2): 398-417.
[15]张春美. 差分进化算法理论与应用[M].北京, 北京理工大学出版社, 2014: 7-8.