Prediction for Fatigue Life of Al-Zn-Mg Alloy Based on Grey System Theory

Expand
  • a. School of Materials Science and Engineering; b. Light Alloy Research Institute; c. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China

Online published: 2018-03-01

Abstract

The S-N curve was obtained by tests based on the fatigue property of Al-Zn-Mg alloy plates. The grey system theory model was applied in predicting fatigue life of the plates while the prediction was evaluated and compared with the S-N curve. The results show that the predicative values of the gray system model are close to those of the S-N curve, and the equal dimension gray model GM(1,1) has a higher prediction accuracy than the original model GM(1,1) in multi-step prediction. It provides a better estimation of the fatigue life of Al-Zn-Mg aluminum alloy plates.

Cite this article

TANG Hongyuana,ZHANG Zhenb,c,DENG Yunlaia,b,c,YE Lingyinga,QIAN Pengweib,c,ZHAO Longa . Prediction for Fatigue Life of Al-Zn-Mg Alloy Based on Grey System Theory[J]. Journal of Shanghai Jiaotong University, 2018 , 52(2) : 228 -232 . DOI: 10.16183/j.cnki.jsjtu.2018.02.016

References

[1]肖骥, ETIENNE Pessard, 王敏, 等. 7475铝合金板材的各向异性疲劳性能[J].上海交通大学学报, 2011, 45(11): 1678-1683. XIAO Ji, ETIENNE Pessard, WANG Min, et al. The research of anisotropic fatigue behavior of 7475 aluminum alloy plate[J]. Journal of Shanghai Jiao Tong University, 2014, 45(11): 1678-1683. [2]CASSADA W, LIU J, TALEY J. Aluminum alloy for aircraft structure[J]. Advanced Materials Processes, 2002, 27(12): 27-29. [3]许晓静, 吴桂潮, 王彬, 等. 7085铝合金固溶温度预热后的大应变变形强化[J].上海交通大学学报, 2011, 45 (6): 911-914. XU Xiaojing, WU Guichao, WANG Bin, et al. Strengthening of 7085 Al alloy by large strain deformation with the alloy preheated at solution treatment temperature[J]. Journal of Shanghai Jiao Tong University, 2011, 45 (6): 911-914. [4]MERATI A, EASTAUGH G. Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloy[J]. Engineering Failure Analysis, 2007, 14(4): 673-685. [5]邓运来, 王亚凤, 林化强, 等. 挤压温度对Al-Zn-Mg合金力学性能的影响[J].材料研究学报, 2016, 30(2): 87-94. DENG Yunlai, WANG Yafeng, LIN Huaqiang, et al. Effect of extrusion temperature on strength and fracture toughness of Al-Zn-Mg alloy[J]. Chinese Journal of Materials Research, 2016, 32(2): 87-94. [6]黄英, 邓运来, 陈龙, 等. 7N01铝合金挤压板的微结构、织构和性能[J].材料研究学报, 2014, 28(7): 541-548. HUANG Ying, DENG Yunlai, CHEN Long, et al. Microstructure, texture and property of extruded 7N01 aluminum alloy plates[J]. Chinese Journal of Materials Research, 2014, 28(7): 541-548. [7]付高, 邓运来, 王亚凤, 等. 微量元素含量对 Al-Zn-Mg 合金组织与性能的影响[J].中国有色金属学报, 2015, 25(10): 2632-2641. FU Gao, DENG Yunlai, WANG Yafeng, et al. Effect of microelement content on microstructure and properties of Al-Zn-Mg aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(10): 2632-2641. [8]曾世宝, 叶凌英, 刘胜胆, 等. 均匀化升温速率对7N01铝合金组织与力学性能的影响[J].中国有色金属学报, 2014, 24(9): 2228-2234. ZENG Shibao, YE Lingying, LIU Shengdan, et al. Effect of heating rate on microstructure and mechanical properties and of 7N01 aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2014, 24(9): 2228-2234. [9]MAKKONEN M. Predicting the total fatigue life in metal[J]. International Journal of Fatigue, 2009, 31(7): 1163-1175. [10]NAKAI M, ETO T. New aspect of development of high strength aluminum alloys for aerospace application[J]. Materials Science and Engineering A, 2002, 35(1): 62-68. [11]ROBERT C, SAINTIER N, PALIN-LUC T, et al. Micro-mechanical modelling of high cycle fatigue behavior of metals under multi-axial loads[J]. Mechanics of Materials, 2012, 55(14): 112-129. [12]赵先琼, 孙晓红, 付卓, 等. 2E12铝合金板材疲劳寿命的灰色预测[J].合肥工业大学学报(自然科学版), 2013, 36(9): 1042-1045. ZHAO Xianqiong, SUN Xiaohong, FU Zhuo, et al. Grey prediction in fatigue of 2E12 aluminum alloy[J]. Journal of Hefei University of Technology(Natural Science Edition), 2013, 36(9): 1042-1045. [13]LIU J, YUE Z F, LIU Y S. Surface finish of open holes on fatigue life[J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 35-45. [14]孙玉兰, 王茂延. 基于灰色模型GM(1, 1)的疲劳寿命预测[J]. 科学技术与工程, 2011, 11(3): 560-562. SUN Yulan, WANG Maoyan. Prediction for fatigue life based on grey model GM(1, 1)[J]. Science Technology and Engineering, 2011, 11(3): 560-562. [15]WANG X L, NIE H, JIANG Q. Study and application of grey system theory for fatigue life prediction[J]. Key Engineering Materials, 2009, 413/414: 717-724. [16]张怀亮. 灰色GM(1, 1)模型在金属材料疲劳试验数据预测中的应用[J]. 化工机械, 2002, 29(1): 15-17. ZHANG Huailiang. Application of grey GM(1, 1) model in the data prediction of the fatigue tests of metal-material[J]. Chemical Engineering and Machinery, 2002, 29(1): 15-17. [17]SUN Z H, MA J, SU X M, et al. Grey relational analysis of fatigue performance of semi-rigid pavement structure[J]. Applied Mechanics & Materials, 2014, 651/652/653: 1164-1167. [18]刘思峰, 杨英杰, 吴利丰, 等. 灰色系统理论及应用[M]. 7版. 北京: 科学出版社, 2010. [19]SHIMIZU S, TOSHA K, TSUCHIYA K. New data analysis of probabilistic stress-life (P-S-N) curve and its application for structural materials[J]. International Journal of Fatigue, 2010, 32(3): 565-575. [20]XU J. WANG C X. Study on application of grey system theory in fatigue span design of machine tool axles[J]. Advanced Materials Research, 2011, 201/202/203: 1156-1160.
Options
Outlines

/