Based on the Reynolds Averaged Navier-Stokes (RANS) equations, two-dimensional computational fluid dynamics (CFD) simulations are performed to investigate the influence of the cavitator diameter on the hydrodynamic forces and cavitation bubble of the supercavitating underwater vehicle. Results show that the drag of the underwater vehicle increases linearly with the increase of the cavitation number until the critical value, and then grows fast and nonlinearly. The increase of the cavitator diameter leads to an increase of drag for large cavitation numbers, and it also increases the critical cavitation number.
LI Yilin,SONG Baowei
. Influence of the Cavitator Diameter on the Performance of a Supercavitating Underwater Vehicle[J]. Journal of Shanghai Jiaotong University, 2017
, 51(12)
: 1488
-1492
.
DOI: 10.16183/j.cnki.jsjtu.2017.12.012
[1]陈兢. 新概念武器——超空泡水下高速武器[J]. 飞航导弹, 2004 (10): 34-37.
CHEN Jing. New concept weapon—Supercavitating underwater high-speed weapons[J]. Winged Missiles Journal, 2004(10): 34-37.
[2]林明东, 胡凡, 张为华. 超空泡航行体锥形空化器优化设计[J]. 国防科技大学学报, 2010, 32(4): 37-41.
LIN Mingdong, HU Fan, ZHANG Weihua. Optimal design of conical cavitator of supercavitating vehicles[J]. Journal of National University of Defense Technology, 2010, 32(4): 37-41.
[3]姜俊, 刘文化, 刘忠,等. 一种超空泡空化器优化设计方法[J]. 海军工程大学学报, 2010, 22(6): 60-64.
JIANG Jun, LIU Wenhua, LIU Zhong, et al. A method for optimal design of a supercavitating cavitator[J]. Journal of Naval University of Engineering, 2010, 22(6): 60-64.
[4]邢彦江, 张嘉钟, 曹伟,等. 尾翼楔角对通气超空泡特性影响试验研究[J]. 哈尔滨工业大学学报, 2013, 45(1): 25-29.
XING Yanjiang, ZHANG Jiazhong, CAO Wei, et al. Experimental investigation of the effect of tail wings wedge angle on ventilated supercavity hydrodynamic[J]. Journal of Harbin Institute of Technology, 2013, 45(1): 25-29.
[5]栗夫园, 党建军. 带翼锥形空化器的流体动力特性分析[J]. 鱼雷技术, 2016, 24(3): 172-176.
LI Fuyuan, DANG Jianjun. Hydrodynamic characteristics of conical cavitator with fins[J]. Torpedo Technology, 2016, 24(3): 172-176.
[6]周景军, 于开平. 空化器倾斜角对超空泡流影响的三维数值仿真研究[J]. 船舶力学, 2011, 15(1/2): 74-80.
ZHOU Jingjun, YU Kaiping. Three dimensional numerical simulation on the influence of cavitator inclination angle to supercavity flow[J]. Journal of Ship Mechanics, 2011, 15(1/2): 74-80.
[7]PENDAR M R, ROOHI E. Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models[J]. Ocean Engineering, 2016, 112(2): 287-306.
[8]WANG Y, SUN X J, DAI Y J, et al. Numerical investigation of drag reduction by heat-enhanced cavitation[J]. Applied Thermal Engineering, 2015, 75: 193-202.
[9]GONG Yejun, ZHAN Jiemin, LI Tianzeng. Numerical investigation of the effect of rotation on cavitating flows over axisymmetric cavitators[J]. Journal of Hydrodynamics, 2016, 28(3): 431-441.
[10]AHN B K, JEONG S W, KIM J H, et al. An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(2): 227-237.
[11]ROUSE H, MCNOWN J S. Cavitation and pressure distribution: Head forms at zero angle of yaw[R]. USA: State University of Iowa, 1948.