Serious springback and inaccurate springback prediction can lead to problems of high expenses of both money and time during the adjustment of mold. Thus, several advanced hardening models such as Swift isotropic hardening model, NSK model, Y-U model and Chaboche model were used to estimate the springback prediction of QP980 steel stamping. Software LS-DYNA which contains the four models was used to simulate the prediction, and the simulation results were compared with the experiment results. It was found that Y-U model can provide a better prediction for the springback of QP steel stamping. Y-U model can be used in the adjustment of mold so that the adjusting time and cost can be reduced.
YAN Jiawei,HU Qi,WANG Zhenzhen,CHEN Jun
. A Comparison Study of Different Hardening Models in Springback Prediction for Stamping of the Third Generation Ultra High Strength Steel[J]. Journal of Shanghai Jiaotong University, 2017
, 51(11)
: 1334
-1339
.
DOI: 10.16183/j.cnki.jsjtu.2017.11.008
[1]李激光, 张金栋, 黄海亮, 等. 高强汽车用钢的研究现状及发展趋势[J]. 材料导报, 2012(s1): 397-401.
LI Jiguang, ZHANG Jindong, HUANG Hailiang, et al. Research status and development trend of high strength steel for automotive use[J]. Materials Review, 2012(s1): 397-401.
[2]康永林, 朱国明. 中国汽车发展趋势及汽车用钢面临的机遇与挑战[J]. 钢铁, 2014, 49(12): 1-7.
KANG Yonglin, ZHU Guoming. Development trend of China’s automobile industry and the opportunities and challenges of steels for automobiles[J]. Iron and Steel, 2014, 49(12): 1-7.
[3]马鸣图, 易红亮. 高强度钢在汽车制造中的应用[J]. 热处理, 2011, 26(6): 9-20.
MA Mingtu, YI Hongliang. Application of high strength steel to manufacturing auto[J]. Heat Treatment, 2011, 26(6): 9-20.
[4]李扬, 刘汉武, 杜云慧, 等. 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报, 2011, 25(13): 101-104.
LI Yang, LIU Hanwu, DU Yunhui, et al. Applications and developments of AHSS in automobile industry[J]. Materials Review, 2011, 25(13): 101-104.
[5]刁可山, 蒋浩民, 陈新平.基于成形特性的宝钢QP980试验研究及典型应用[J].锻压技术, 2012, 37(6): 113-115.
DIAO Keshan, JIANG Haomin, CHEN Xinping. Research and typical application of QP980 steel produced by BaoSteel based on formability[J]. Forging & Stamping Technology, 2012, 37(6): 113-115.
[6]HAO Q, WANG Y, JIA X, et al. Dynamic compression behavior and microstructure of a novel low-carbon quenching-partitioning-tempering steel[J]. Acta Metallurgica Sinica, 2014, 27(3): 444-451.
[7]TAN Z L, WANG K K, GAO G H, et al. Mechanical properties of steels treated by Q-P-T process incorporating carbide-free-bainite/martensite multiphase microstructure[J]. Journal of Iron and Steel Research, International, 2014, 21(2): 191-196.
[8]WAGONER R H, LIM H, LEE M G. Advanced issues in springback[J]. International Journal of Plasticity, 2013, 45(45): 3-20.
[9]张璐. 高强钢回弹预测中材料模型的适用性研究及回弹补偿的自动实现[D].上海: 上海交通大学材料科学与工程学院, 2012.
[10]ARMSTRONG P J, FREDERICK C O. A mathematical representation of the multiaxial Bauschinger effects[R]. CEGB Report, RD/B/N/731, Berkeley Nuclear Laboratories, Berkley UK, 1966.
[11]CHABOCHE J L,ROUSSELIER G. On the plastic and viscoplastic constitutive equations, Part I and Part II[J]. Journal of Pressure Vessel Technology, 1983, 105(2): 4719-4754.
[12]ZANG S L, GUO C, THUILLIER S, et al. A model of one-surface cyclic plasticity and its application to springback prediction[J]. International Journal of Mechanical Sciences, 2011, 53(6): 425-435.
[13]YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation[J]. International Journal of Plasticity, 2002, 18(5-6): 661-686.
[14]YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity and its application to springback simulation[J]. International Journal of Mechanical Sciences, 2003, 45(10): 1687-1702.
[15]SUN L, WAGONER R H. Complex unloading behavior: Nature of the deformation and its consistent constitutive representation[J]. International Journal of Plasticity, 2011, 27(7): 1126-1144.
[16]LEE J, LEE J Y, BARLAT F, et al. Extension of quasi-plastic-elastic approach to incorporate complex plastic flow behavior-application to springback of advanced high-strength steels[J]. International Journal of Plasticity, 2013, 45(2): 140-159.
[17]XIAO Y Z, CHEN J, CAO J. A generalized thermodynamic approach for modeling nonlinear hardening behaviors[J]. International Journal of Plasticity, 2012, 38(6): 102-122.
[18]XIAO Y Z, CHEN J, ZHU X, et al. Modified maximum mechanical dissipation principle for rate-independent metal plasticity[J]. Journal of Applied Mechanics, 2013, 80(6): 061020.
[19]肖煜中.金属宏观本构能量原理研究及其在板料冲压成形数值模拟中的应用[D].上海: 上海交通大学材料科学与工程学院, 2013.
[20]Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual, Vol. I, II, and III, R8.0[M]. Livermore: Livermore Software Technology Corporation (LSTC), 2015.
[21]刘罡, 林忠钦, 张卫刚.薄板成形仿真动力显式算法的虚拟凸模速度分析[J]. 上海交通大学学报, 2000, 34(10): 1406-1409.
LIU Gang, LIN Zhongqin, ZHANG Weigang. Study on virtual punch velocity in simulation of sheet metal forming by explicit method[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1406-1409.