Combinatorial Optimization Model of Exclusive Bus Lane and
 Transit Signal Priority in the Signal Road Network

Expand
  •  1. School of Control Science and Engineering, Shandong University, Jinan 250061, China;
    2. Jinan Quantong Technology and Information Ltd., Jinan 250101, China

Online published: 2017-07-31

Supported by

 

Abstract

 In order to solve the problem of locating exclusive bus lane in the signal road network, this paper presents a combinatorial optimization model of exclusive bus lane location and transit signal priority design. The problem is summarized as a bilevel optimization structure. The upperlevel of the proposed model is designed to solve the integrated design and operation of exclusive bus lane location, lane functional allocation and passive bus priority design with an objective of minimizing the total travel time by car and bus. The lowerlevel of the proposed model is a location model of car users and bus users to minimize the generalized travel cost. A genetic algorithm is developed to solve the proposed model. Numerical analyses have demonstrated the validness of the proposed model. The results also show that the integrated optimization design approach of exclusive bus lane and transit signal priority is preferable to a simply optimizing approach of exclusive bus lane location. And the scientific construction of exclusive bus lane and transit signal priority can maximize the contribution of transit priority strategies to the efficiency of the entire multimodal transportation systems.

Cite this article

LU Xiaolin1,PAN Shuliang2,ZOU Nan1 .  Combinatorial Optimization Model of Exclusive Bus Lane and
 Transit Signal Priority in the Signal Road Network[J]. Journal of Shanghai Jiaotong University, 2017
, 51(7) : 846 -854 . DOI: 10.16183/j.cnki.jsjtu.2017.07.012

References

 [1]MESBAH M, SARVI M, CURRIE G. New methodology for optimizing transit priority at the network level[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2089(1): 93100.
[2]MESBAH M, SARVI M, OUVEYSI I, et al. Optimization of transit priority in the transportation network using a decomposition methodology[J]. Transportation Research. Part C: Emerging Technologies, 2011, 19(2): 363373.
[3]MESBAH M, SARVI M, CURRIE G, et al. Policymaking tool for optimization of transit priority lanes in urban network[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2197(1): 5462.
[4]MESBAH M, SARVI M, CURRIE G. Optimization of transit priority in the transportation network using a genetic algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 908919.
[5]YAO J, SJO F, ZHOU Z, et al. Combinatorial optimization of exclusive bus lanes and bus frequencies in multimodal transportation network[J]. Journal of Transportation Engineering, 2012, 138(12): 14221429.
[6]MIANDOABCHI E, FARAHANI R Z, SZETO W Y. Biobjective bimodal urban road network design using hybrid a new approach to evaluating onroad public transport priority Metaheuristics[J]. Central European Journal of Operations Research, 2012, 20(4): 583621.
[7]CEYLAN H, BELL M G. Reserve capacity for a road network under optimized fixed time traffic signal control[J]. Journal of Intelligent Transportation Systems, 2004, 8(2): 8799.
[8]CHIOU S W. A hybrid approach for optimal design of signalized road network[J]. Applied Mathematical Modelling, 2008, 32(2): 195207.
[9]GALLO M, D’ACIERNO L, MONTELLA B. A metaheuristic approach for solving the urban network design problem[J]. European Journal of Operational Research, 2010, 201(1): 144157.
[10]CANTARELLA G E, PAVONE G, VITETTA A. Heuristics for urban road network design: Lane layout and signal settings[J]. European Journal of Operational Research, 2006, 175(3): 16821695.
[11]赵彤,高自友.最优信号控制条件下城市交通离散网络设计问题的备用能力模型[J]. 系统工程理论与实践, 2004, 24(8): 118123.
ZHAO Tong, GAO Ziyou. A reserve capacity model of optimal signal control with the urban transport discrete network design problem[J]. Systems EngineeringTheory & Practice, 2004, 24(8): 118123.
[12]CASCETTA E, GALLO M, MONTELLA B. Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models[J]. Annals of Operations Research, 2006, 144(1): 301328.
[13]SUN D, BENEKOHAL R F, WALLER S T. Bilevel programming formulation and heuristic solution approach for dynamic traffic signal optimization[J]. ComputerAided Civil and Infrastructure Engineering, 2006, 21(5): 321333.
[14]MA W, HEAD K L, FENG Y. Integrated optimization of transit priority operation at isolated intersections: A personcapacitybased approach[J]. Transportation Research. Part C: Emerging Technologies, 2014, 40: 4962.
[15]马万经, 杨晓光. 基于车道的单点交叉口公交被动优先控制模型[J]. 中国公路学报, 2010, 23(5): 96101.
MA Wanjing, YANG Xiaoguang. Lanebased optimization model of passive bus priority control for isolated intersection[J]. China Journal of Highway and Transport, 2010, 23(5): 96101.
[16]WONG C K, WONG S C. Lanebased optimization of signal timings for isolated junctions[J]. Transportation Research. Part B: Methodological, 2013, 37(1): 6384.
[17]MANUAL H C. Highway capacity manual[M]. Washington, DC: Transportation Research Board, 2000: 358362.
[18]YING J Q, LU H P, SHI J. An algorithm for local continuous optimization of traffic signals[J]. European Journal of Operational Research, 2007, 181(3): 11891197.
[19]YING J Q, YANG H. Sensitivity analysis of stochastic user equilibrium flows in a bimodal network with application to optimal pricing[J]. Transportation Research. Part B: Methodological, 2005, 39(9): 769795.
[20]LONG J, GAO Z, ZHANG H, et al. A turning restriction design problem in urban road networks[J]. European Journal of Operational Research, 2010, 206(3): 569578.
[21]LIU H X, HE X Z, HE B S. Method of successive weighted averages (MSWA) and selfregulated averaging schemes for solving stochastic user equilibrium problem[J]. Networks & Spatial Economics, 2009, 9(4): 485503.
[22]PARK B. Traffic signal optimization program for oversaturated conditions: Genetic algorithm approach[J]. Transportation Research Record Journal of the Transportation Research Board, 1999, 1683(1):133142.
[23]TEKLU F, SUMALEE A, WATLING D. A genetic algorithm approach for optimizing traffic control signals considering routing[J]. ComputerAided Civil and Infrastructure Engineering, 2007, 22(1): 3143.
Options
Outlines

/