Simulation of Creep Deformation for P92 Steel Based on
 Multiple Damage Parameters

  • 张威1 ,
  • 2,王小威1 ,
  • 2 ,
  • 3,姜勇1 ,
  • 2,黄鑫1 ,
  • 2,巩建鸣1 ,
  • 2,翁晓祥1 ,
  • 2
Expand
  •  1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China;
    2. Jiangsu Key Lab of Design and Manufacture of Extreme Pressure Equipment, Nanjing 211816, China;
    3. Department of Materials Science and Engineering, Ghent University, B9052 Zwijnaarde, Belgium

Online published: 2017-08-30

Supported by

 

Abstract

 A twodamage state variable model was used to describe the softening, damage initiation and growth mechanisms of P92 steel at 650℃ under the continuous damage mechanics framework. Based on the analysis of existed creep experimental data and creep model, a methodology was proposed to determine the constitutive constants of P92 steel at 650℃. It was shown that the constitutive constants obtained from analysis of creep experimental data could simulate the creep deformation of P92 steel at 650℃ precisely, and the constitutive equations with multiple damage parameters could be extrapolated to other stress levels. The continuous damage equations based on the multiple damage parameters can give a good description of creep deformation from terms of inelastic strain rate, inner stress and microstructural evolution. Therefore, the study is of profound practical significance in engineering.

Cite this article

张威1 , 2,王小威1 , 2 , 3,姜勇1 , 2,黄鑫1 , 2,巩建鸣1 , 2,翁晓祥1 , 2 .  Simulation of Creep Deformation for P92 Steel Based on
 Multiple Damage Parameters[J]. Journal of Shanghai Jiaotong University, 2017
, 51(8) : 1013 -1017 . DOI: 10.16183/j.cnki.jsjtu.2017.08.017

References

 [1]ENNIS P J,  CZYRSKAFILEMONOWICZ A. Recent advances in creepresistant steels for power plant applications[J]. Sadhana,  2003,  28(3/4): 709730.
[2]王小威,  巩建鸣,  郭晓峰,  等. 超超临界发电厂中 P92 钢蠕变特性及断裂机制[J]. 南京工业大学学报(自然科学版),2014, 36(3): 3238.
WANG Xiaowei, GONG Jianming, GUO Xiaofeng, et al. Creep properties and fracture mechanism of P92 steel used inultrasupercritical power[J]. Journal of Nanjing Tech University (Natural Science Edition),  2014,  36(3): 3238.
[3]FEDOSEEVA A,  DUDOVA N,  KAIBYSHEV R. Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel[J]. Materials Science and Engineering: A,  2016,  654(1): 112.
[4]BENDICK W,  GABREL J. Assessment of creep rupture strength for the new martensitic 9%Cr steels E911 and T/P92[J]. Materials at High Temperatures,  2008,  25(3): 139148.
[5]YURECHKO M,  SCHROER C,  SKRYPNIK A,  et al. Creeptorupture of the steel P92 at 650℃ in oxygencontrolled stagnant lead in comparison to air[J]. Journal of Nuclear Materials,  2013,  432(1): 7886.
[6]PETRY C,  LINDET G. Modelling creep behaviour and failure of 9Cr0.5Mo1.8WVNb steel[J]. International Journal of Pressure Vessels and Piping,  2009,  86(8): 486494.
[7]YIN Y F,  FAULKNER R G. Continuum damage mechanics modelling based on simulations of microstructural evolution kinetics[J]. Materials Science and Technology,  2006,  22(8): 929936.
[8]WANG J,  STEINMANN P,  RUDOLPH J,  et al. Simulation of creep and cyclic viscoplastic strains in highCr steel components based on a modified BeckerHackenberg model[J]. International Journal of Pressure Vessels and Piping,  2015,  128(1): 3647.
[9]CHEN H,  ZHU G R,  GONG J M. Creep life prediction for P91/12Cr1MoV dissimilar joint based on the omega method[J]. Procedia Engineering,  2015,  130(1): 11431147.
[10]JELWAN J,  CHOWDHURY M,  PEARCE G. Design for creep: A critical examination of some methods[J]. Engineering Failure Analysis,  2013,  27(1): 350372.
[11]ZHENG Y,  YANG S,  LING X. Creep life prediction of small punch creep testing specimens for serviceexposed Cr5Mo using the thetaprojection method[J]. Engineering Failure Analysis,  2017,  72(1): 5866.
[12]EVANS M. A comparative assessment of creep property predictions for a 1CrMoV rotor steel using the crispen,  CDM,  omega and theta projection techniques[J]. Journal of Materials Science,  2004,  39(6): 20532071.
[13]DYSON B. Use of CDM in materials modeling and component creep life prediction[J]. Journal of Pressure Vessel Technology,  2000,  122(3): 281296.
[14]PERRIN I J,  HAYHURST D R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 600℃—675℃[J]. The Journal of Strain Analysis for Engineering Design,  1996,  31(4): 299314.
[15]ENNIS P J,  ZIELINSKALIPIEC A,  WACHTER O,  et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia,  1997,  45(12): 49014907.
[16]XU Q,  LU Z,  WANG X. Damage modelling: The current state and the latest progress on the development of creep damage constitutive equations for high Cr steels[J]. Materials at High Temperatures,  2017,  34(3): 229237.
[17]SKLENIKA V,  KUCHAOV K,  SVOBODA M,  et al. Longterm creep behavior of 9%—12%Cr power plant steels[J]. Materials Characterization,  2003,  51(1): 3548.
[18]MURCH C ,  LEEN S B,  O’DONOGHUE P E,  et al. A physicallybased creep damage model for effects of different precipitate types[J]. Materials Science and Engineering: A,  2017,  682(1): 714722.
Outlines

/