Zero Deviation Characterization of Jet Pipe Servo Valve in
ThreeDimensional Centrifugal Environment

Expand
  •  School of Mechanical Engineering, Tongji University, Shanghai 200092, China

Online published: 2017-08-30

Supported by

 

Abstract

 In view of the zero deviation problem of jet pipe servo valve under centrifugal environment, a mathematic model of the zero deviation characterization of the jet pipe servo valve under threedimensional centrifugal environment was built. The factors to zero deviation of the jet pipe servo valve including armature component eccentricity, electromagnetic torque coefficient, feedback rod stiffness and moving part quality were analyzed. The measures for decreasing zero deviation value of the jet pipe servo valve under threedimensional centrifugal environment were put forward. The result shows that the zero deviation value has a linear relation with the centrifugal acceleration value. Armature component eccentricity, electromagnetic torque coefficient and moving part quality are the main affecting factors while feedback rod stiffness has little effect. The centrifugal zero deviation can be 0 at each centrifugal acceleration by adjusting appropriate armature component eccentricity or the ratio of spool quality to armature component quality. The verification experiment was carried out by using some type of the jet pipe servo valve. The theoretical result is in good agreement with the experimental data.

Cite this article

YIN Yaobao,WANG Yu .  Zero Deviation Characterization of Jet Pipe Servo Valve in
ThreeDimensional Centrifugal Environment[J]. Journal of Shanghai Jiaotong University, 2017
, 51(8) : 984 -991 . DOI: 10.16183/j.cnki.jsjtu.2017.08.013

References

 [1]MASKREY R H, THAYER W J. A brief history of electrohydraulic servomechanisms[J]. Journal of Dynamic Systems, Measurement and Control, 1978, 100(2): 110116.
[2]訚耀保. 极端环境下的电液伺服理论及应用技术[M]. 上海: 上海科学技术出版社, 2012: 1322.
[3]HIREMATH S S, SINGAPERUMAL M, KUMAR R K. FE approach: Electromechanicalfluid interaction of jet pipe electrohydraulic flow control servovalve[C]∥The Fluid Power and Systems Technology Division. New York: ASME, 2003: 189194.
[4]HENRI P D, HOLLERBACH J M,NAHVI A. An analytical and experimental investigation of a jet pipe controlled electropneumatic actuator[J]. IEEE Transactions on Robotics and Automation, 1998, 14(4): 601611.
[5]HAYASHI S, MATSUI T, ITO T. Study of flow and thrust in nozzleflapper valves[J]. Journal of Fluids Engineering, 1975, 97(1): 3950.
[6]KRIVTS I L. Optimization of performance characteristics of electro pneumatic (twostage) servo valve[J]. Journal of Dynamic Systems, Measurement and Control, 2004, 126(2): 416420.
[7]KAWASHIMA K, YOUN C, KAGAWA T. Development of a nozzleflappertype servo valve using a slit structure[J]. Journal of Fluids Engineering, 2006, 129(5): 573578.
[8]EIARABY M, EIKAFRAWY A, FAHMY A. Dynamic per formance of a nonlinear nondimensional two stage electrohydraulic servovalve model[J]. International Journal of Mec Hanics and Materials in Design, 2011, 7(2): 99110.
[9]曾广商, 何友文. 射流管阀伺服阀研制[J]. 液压与气动, 1996, 20(3): 68.
ZENG Guangshang, HE Youwen. The development of the jet pipe servo valve[J]. Journal of Chinese Hydraulics and Pneumatics, 1996, 20(3): 68.
[10]姚晓先, 杜民, 梁作宝. 射流管阀压力特性研究[J]. 弹箭与制导学报, 2002, 22(4): 5659.
YAO Xiaoxian, DU Min, LIANG Zuobao. Study of pressure character of jet pipe valves[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2002, 22(4): 5659.
[11]李跃松, 朱玉川, 吴洪涛, 等. 超磁致伸缩执行器驱动的射流管伺服阀参数优化[J]. 航空学报, 2011, 32(7): 13361344.
LI Yuesong, ZHU Yuchuan, WU Hongtao, et al. Parameter optimization of jetpipe servo valve driven by giant magnetostrictive actrator[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 13361344.
[12]褚渊博, 袁朝辉, 张颖. 射流管式伺服阀冲蚀磨损特性[J]. 航空学报, 2015, 36(5): 15481555.
CHU Yuanbo , YUAN Zhaohui, ZHANG Ying. Erosion wear characteristic of jet pipe servo valve[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 15481555.
[13]訚耀保, 付嘉华, 金瑶兰. 射流管伺服发前置级冲蚀磨损数值模拟[J]. 浙江大学学报(工学版), 2015, 49(12): 22522260.
YIN Yaobao, FU Jiahua, JIN Yaolan. Numerical simulation of erosion wear of prestage of jet pipe servo valve[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(12): 22522260.
[14]王兆铭, 渠立鹏, 张东, 等. 射流管伺服阀在发动机温度控制中的应用[J]. 东北大学学报(自然科学版), 2009, 30(10): 14851488.
WANG Zhaoming, QU Lipeng, ZHANG Dong, et al. Application of jetpipe electrohydraulic servovalve to temperatuer control of aeroengine[J]. Journal of Northeastern University(Natural Science), 2009, 30(10): 14851488.
[15]张学忠. 导引头电液伺服阀离心零漂问题的理论分析与措施[J]. 制导与引信, 1994(4): 4448.
ZHANG Xuezhong. Theoretical analysis and measures on centrifugal null drift of seeker servo valves[J]. Guidance & Fuze, 1999(4): 4448.
[16]GARCIA O, DUQUE M, CAICEDO B. Control system for 1DOF vibrating machine for soil scale model by centrifugal forces[C]∥Robotics Symposium, 2011 IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications (LARC). New York: IEEE, 2011: 16.
[17]訚耀保, 张曦, 李长明. 一维离心环境电液伺服阀零偏值分析[J]. 中国机械工程, 2012, 23(10): 11421146.
YIN Yaobao, ZHANG Xi, LI Changming. Zero deviation of electricalhydraulic servo valve under onedimensional centrifugal acceleration environment[J]. China Mechanical Engineering, 2012(10): 11421146.
[18]訚耀保, 李长明, 江金林. 三维离心环境下的电液伺服阀特性分析[J]. 机械工程学报, 2015, 51(2): 169177.
YIN Yaobao, LI Changming,JIANG Jinlin. Characteristics of electro hydraulic servo valves under threedimensional centrifugal environment[J]. Journal of Mechanical Engineering, 2015, 51(2): 169177.
[19]訚耀保, 王玉. 射流管伺服阀前置级压力特性[J]. 航空动力学报, 2015, 12(30): 30583064.
Options
Outlines

/