A thermodynamic vent system with refrigerant R141b as working substance has been established for the purpose of revealing the primary principle and validating a modeling program. The experimental TVS was installed within a tank with a 450mm inner diameter cylinder and two under development elliptical domes, and has a total volume of 0.11m3 approximately. Tests of pressure control under the action of spray bar alone and the joint action of spray bar, throttle valve and heat exchanger were conducted with representative input heat and fill level. The results showed that the experimental system could successfully control the ullage gauge pressure between 80 and 90kPa for 0.98 hour by operating the spray bar alone, while in the combined operation mode only 5.8% (3.35kg) of R141b was vented in 2 hours. The ability of this system for simulating the thermodynamic vent process of evaporative fluids was validated.
CHEN Zhongcan1, LI Peng2, SUN Peijie2, WANG Tianxiang3, LI Xiaoci1, HUANG Yonghua1
. Simulation of a Thermodynamic Vent System Working at
Room Temperature and Its Preliminary Pressurization Testing [J]. Journal of Shanghai Jiaotong University, 2017
, 51(8)
: 946
-953
.
DOI: 10.16183/j.cnki.jsjtu.2017.08.008
[1]CHATO D J. Cryogenic technology development for exploration missions[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2007.
[2]HASAN M M, LIN C S, VAN DRESAR N T. Selfpressurization of a flight weight liquid hydrogen storage tank subjected to low heat flux[R]. Ohio:NASA/TM, 1991.
[3]VAN DRESAR N T, HASAN M M, LIN C S. Selfpressurization of a flight weight liquid hydrogen tank: Effects of fill level at low wall heat flux[R]. Ohio:NASA/TM, 1991.
[4]TIBOR L, CHARLES W. ZeroG thermodynamic venting system final report[R]. California:Rockwell Aerospace,1994.
[5]HASTINGS L J, TUCKER S P, FLACHBART R H, et al. Marshall space flight center inspace cryogenic fluid management program overview[C]∥41th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson: AIAA, 2005.
[6]VAN OVERBEKE T J. Thermodynamic vent system test in a low earth orbit simulation[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale: AIAA, 2004.
[7]HURLBERT E A, ROMIG K A, JIMENEZ R, et al. Thermodynamic vent system for an onorbit cryogenic reaction control engine[R]. Houston: NASA Tech Briefs, 2012.
[8]CHIN S L, VAN DRESAR N T, HASAN M M. Pressure control analysis of cryogenic storage systems[J]. Journal of Propulsion and Power, 2004, 20(3): 480485.
[9]HEDAYAT A, BAILEY J W, HASTINGS L J, et al. Test data analysis of a spray bar zeroG liquid hydrogen vent system for upper stages[J]. Advances in Cryogenic Engineering, 2004, 49:11711178.
[10]FLACHBART R H, HASTINGS L J, MARTIN J J. Testing of a spray bar zero gravity cryogenic vent system for upper stages[C]∥35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Los Angeles: AIAA, 1999.
[11]HASTINGS L J, FLACHBART R H, MARTIN J J, et al. Spray bar zerogravity vent system for onorbit liquid hydrogen[R]. Alabama:NASA/TM, 2003.
[12]FLACHBART R H, HASTINGS L J, HEDAYAT A, et al. Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J]. Cryogenics, 2008, 48(5/6): 217222.
[13]HASTINGS L J, BOLSHINSKIY L G, HEDAYAT A, et al. Liquid methane testing with a largescale spray bar thermodynamic vent system[R]. Washington: NASA/TP, 2014.
[14]朱洪来, 孙沂昆, 张阿莉, 等. 低温推进剂在轨贮存与管理技术研究[J]. 载人航天, 2015, 21(1): 1318.
ZHU Honglai, SUN Yikun, ZHANG Ali, et al. Research on onorbit storage and management technology of crogenic propellant[J]. Manned Spaceflight, 2015, 21(1): 1318.
[15]张天平. 空间低温流体贮存的压力控制技术进展[J]. 真空与低温, 2006, 12(3): 125131.
ZHANG Tianping. The progress of pressure control technology of cryogenic liquid storage in space[J]. Vacuum & Cryogenics, 2006, 12(3): 125131.
[16]颜露, 黄永华, 吴静怡, 等. 低温推进剂在轨储存热力学排气系统TVS研究进展[J]. 低温与超导,2015, 43(2): 513.
YAN Lu, HUANG Yonghua, WU Jingyi, et al. Development of thermodynamic venting system technology for cryogenic propellant storage on orbit[J]. Cryogenics & Superconductivity, 2015, 43(2): 513.
[17]李鹏, 孙培杰, 包轶颖, 等. 低温推进剂长期在轨储存技术研究进展[J]. 载人航天, 2012, 18(1): 3036.
LI Peng, SUN Peijie, BAO Yiying, et al. Cryogenic propellant longterm storage on orbit technology overview[J]. Manned Spaceflight, 2012, 18(1): 3036.
[18]冶文莲, 王小军,王丽红. 微重力下低温贮箱压力控制技术进展[J]. 低温与超导, 2012,40(6) : 812.
YE Wenlian, WANG Xiaojun, WANG Lihong. Progress of pressure control technology of cryogenic storage tanks in microgravity[J].Crogenics & Superconductivity, 2012, 40(6): 812.
[19]胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术进展[J]. 导弹与航天运载技术, 2009(6): 2834.
HU Weifeng, SHEN Lin, YANG Jianmin, et al. Progress of study on transpiration control technology for orbit longterm applied cryogenic propellant[J]. Missiles and Space Vehicles, 2009 (6): 2834.
[20]胡伟峰, 申麟, 彭小波,等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程,2011(3): 5966.
HU Weifeng, SHEN Lin, PENG Xiaobo, et al. Key technology analysis of boilfoo control study on cryogenic propellant longterm application on orbit[J]. Crogenics, 2011 (3): 5966.
[21]马原, 厉彦忠, 王磊, 等. 低温燃料贮箱热力学排气系统优化分析与性能研究[J]. 低温与超导, 2014,42(7): 1015.
MA Yuan, LI Yanzhong, WANG Lei, et al. Optimized analysis and performance study on thermodynamic vent system in cryogenic fuel tank[J]. Cryogenics & Superconductivity, 2014, 42(7): 1015.
[22]杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 486487.