Command Filtered Adaptive Backstepping Control for Airships

Expand
  •  School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2017-08-30

Supported by

 

Abstract

 As stratospheric platforms, stratospheric airships are generally so large, it is difficult for them to land back on ground accurately after their tasks. Consequently, the control problem of airship landing with system uncertainties and external disturbances is considered. A sixdegreeoffreedom airship model is used, and a command filtered modified backstepping control law combined with adaptive theory is designed based on Lyapunov theory. The command filter and the improved backstepping algorithm can deal with the uncertainties in both dynamic errors and the external disturbances. Numerical simulation results demonstrate good performance for the landing of the airship even under wind condition.

Cite this article

HAN Ding,WANG Xiaoliang,CHEN Li,DUAN Dengping .  Command Filtered Adaptive Backstepping Control for Airships[J]. Journal of Shanghai Jiaotong University, 2017 , 51(8) : 909 -914 . DOI: 10.16183/j.cnki.jsjtu.2017.08.003

References

 [1]HAN D, WANG X L, CHEN L, et al. Commandfiltered backstepping control for a multivectored thrust stratospheric airship[J]. Transactions of the Institute of Measurement and Control, 2015, 38(1): 112.
[2]SMITH S, FORTENBERRY M, LEE M, et al. HiSentinel80: Flight of a high altitude airship[C]∥11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Virginia Beach, USA: AIAA, 2011.
[3]Aviation Safety Boeing Commercial Airplanes. Statistical summary of commercial jet airplane accidents worldwide pperations (1959—2008) [EB/OL]. [20160512]. http:∥www.planecrashinfo.com/cause.htm.
[4]王晓亮, 单雪雄, 陈丽. 平流层飞艇流固耦合分析方法研究[J]. 宇航学报, 2011, 32(1): 2228.
WANG Xiaoliang, SHAN Xuexiong, CHEN li. The study of fluidstructure interaction computation method for stratosphere airship[J]. Journal of Astronautics, 2011, 32(1): 2228.
[5]WAGNER T, VALASEK J. Digital autoland control laws using quantitative feedback teory and direct digital design[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 13991413.
[6]STEVENS B L, LEWIS F L. Aircraft control and simulation[M]. 2nd ed. Hoboken: John Wiley & Sons, 2015.
[7]LIAO F, WANG J L, POH E K, et al. Faulttolerant robust automatic landing control design[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 854871.
[8]张昊, 陈丽. 多螺旋桨浮空器LPV鲁棒变增益H∞控制[J]. 计算机仿真, 2014, 31(5): 7277.
ZHANG Hao, CHEN Li. Robust variable gaincontrol for multipropeller aerostat based on LPV H∞[J]. Computer Simulation, 2014, 31(5): 7277.
[9]欧阳晋, 屈卫东, 席裕庚. 平流层验证飞艇的建模与分析[J]. 上海交通大学学报, 2003, 37(6): 956960.
OUYANG Jin, QU Weidong, XI Yugeng. Stratospheric verifying airship modeling and analysis[J]. Journal of Shanghai Jiao Tong University, 2003, 37(6): 956960.
[10]GOMES S B V, RAMOS J J G. Airship dynamic modeling for autonomous operation[C]∥IEEE International Conference on Robotics & Automation. Leuven, Belgium: IEEE, 1998.
[11]FARRELL J A, POLYCARPOU M M. Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approaches[M]. Hoboken, USA: John Wiley, 2006.
[12]SONNEVELDT L. Adaptive backstepping flight control for modern fighter aircraft[M]. Zutphen, Netherlands: Whrmann Print Service, 2010.
[13]李家宁. 平流层飞艇定点控制技术研究[D]. 南京: 南京航空航天大学自动化学院, 2009.
Options
Outlines

/