Aerial Scene Classification Based on Nonlinear Scale Space

Expand
  •  Jiangsu Key Laboratory of Meteorological Observation and Information Processing,
    Nanjing University of Information Science and Technology, Nanjing 210044, China

Online published: 2017-10-31

Supported by

 

Abstract

 In aerial scene classification, scale invariant feature transform (SIFT) uses linear Gaussian decomposition to extract feature points. The algorithm has many problems, such as fuzzy boundary and loss of detail. Besides, the SIFT cannot describe the color information. Combined with bagofvisualwords (BoVW) model, CKAZE (colorKAZE) descriptor which fuses color feature in nonlinear scale space is proposed to solve these problems. KAZE is used to detect the characteristic information by constructing nonlinear scale space. Color quantization matrix is calculated by noninterval quantization in the HSV (hue, saturation, value) space, and the CKAZE feature descriptor is generated by the quantization matrix. Finally, highlevel semantic features and spatial layout information are extracted and fused. Experimental results show that the average classification accuracy of the proposed algorithm, compared to the classification algorithm based on SIFT, is improved by about 8%. The proposed algorithm improves the feature description ability of KAZE, and breaks the limitation of the SIFT classification algorithm. Besides, for the unmanned aerial vehicle (UAV) scene image, the accuracy can be greatly improved.

Cite this article

CHEN Suting,WANG Zhuo,WANG Qi .  Aerial Scene Classification Based on Nonlinear Scale Space[J]. Journal of Shanghai Jiaotong University, 2017 , 51(10) : 1228 -1234 . DOI: 10.16183/j.cnki.jsjtu.2017.10.012

References

 [1]杨昭, 高隽, 谢昭, 等. 局部Gist特征匹配核的场景分类[J]. 中国图像图形学报, 2013, 18(3): 264270.
YANG Zhao, GAO Juan, XIE Zhao, et al. Scene categorization of local Gist feature match kernel[J]. Journal of Image and Graphics, 2013, 18(3): 264270.
[2]杨涛, 张艳宁, 张秀伟, 等. 基于场景复杂度与不变特征的航拍视频实时配准算法[J]. 电子学报, 2010, 38(5): 10691077.
YANG Tao, ZHANG Yanning, ZHANG Xiuwei, et al. Scene complexity and invariant feature based realtime aerial video registration algorithm[J]. Acta Electronica Sinica, 2010, 38(5): 10691077.
[3]CHANG E, GOH K, SYCHAY G, et al. CBSA: Contentbased soft annotation for multimodal image retrieval using Bayes point machines[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 2638.
[4]SUHASINI P S, KRISHNA K S R, KRISHNA I V M. Combining SIFT and invariant color histogram in HSV space for deformation and viewpoint invariant image retrieval[C]∥IEEE International Conference on Computational Intelligence and Computing Research. Coimbatore:IEEE, 2012: 14.
[5]AICANTARILLA P F, BARTOLI A, DAAVISON A J. KAZE Features[C]∥Proceedings of European Conference on Computer Vision. Florence Italy:Spring Link, 2012: 114.
[6]LOWE D G. Distinctive image features from scaleinvariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91110.
[7]BAY H, ESS A, TUYTELAARS T, et al. Speededup robust features(SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346359.
[8]于永军, 徐锦法, 张梁, 等. 基于改进KAZE特征的合成口径雷达匹配算法[J]. 上海交通大学学报, 2015, 49(9): 12881292.
YU Yongjun, XU Jinfa, ZHANG Liang, et al. SAR image matching algorithm based on improved KAZE[J]. Journal of Shanghai Jiao Tong University, 2015, 49(9): 12881292.
[9]JIANG M, GUO R, ZHANG Z, et al. Parallel implementation for AOS scheme on a dualcore cluster[C]∥IEEE International Conference on Intelligent Networks and Intelligent Systems. Los Alamitos : IEEE, 2010: 362365.
[10]PERONA P, SHIOTA T, MALIK J. Anisotropic diffusion[M]. Netherlands: Springer Link,1994: 7392.
[11]WANG Jingyue, HUANG Weizhang. Image segmentation with eigenfunctions of an anisotropic diffusion operator[J]. IEEE Transaction on Image Processing, 2016, 25(5): 21552167.
[12]张梁, 徐锦法, 夏青元, 等. 无人飞行器双目视觉位姿估计算法改进与验证[J]. 上海交通大学报, 2015, 49(9): 13871393.
ZHANG Liang, XU Jinfa, XIA Qingyuan, et al. An improvement and verification of position attitude estimation algorithm based on binocular vision for unmanned aerial vehicle[J]. Journal of Shanghai Jiao Tong University, 2015, 49(9): 13871393.
[13]BROWN M, LOWE D G. Invariant features from interest point groups[C]∥British Machine Vision Conference. Cardiff, UK:  DBLP, 2002: 656665.
[14]AGRAWAL M, KONOLIGE K, BLAS M R. Censure: Center surround extremas for realtime feature detection and matching[C]∥Computer Vision ECCV 2008. Marseille, France: Springer, 2008: 102115.
[15]LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]∥Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006: 21692178.
[16]CHAJRI Y, MAARIR A, BOUIHALENE B. A comparative study of handwritten mathematical symbols recognition[C]∥IEEE International Conference on Computer Graphics, Imaging and Visualization. Los Alamitos: IEEE, 2016: 448451.
Options
Outlines

/