Broadband Underdetermined Direction of Arrival Estimation Based on
 Continuous Sparse Recovery

Expand
  •  Electronic Engineering Institute of PLA

Online published: 2017-09-20

Supported by

 

Abstract

 For the problem of broadband underdetermined direction of arrival (DOA) estimation, a novel DOA estimation algorithm is proposed based on the continuous sparse recovery. Firstly, the dimension of coprime array receiving data is reduced by using direction wavenumber and the covariance matrix is vectorized to improve the degree of freedom. Then, the continuous sparse recovery model of direction wavenumber is established using the spatial sparseness of direction wavenumber, and the estimation of direction wavenumber is achieved with convex optimization and polynomial rooting. Finally, the signal frequencies and direction wavenumbers are pair matched by using Capon method. With this method, offgrid effects caused by discretizing this range onto a grid in traditional sparse recovery can be neglected, it also improves accuracy and resolution of DOA estimation and the number of sources estimated by the proposed algorithm is larger than the number of actual arrays. Theoretical analysis and simulations demonstrate the effectiveness and feasibility of the proposed method.

Cite this article

WU Chenxi,ZHANG Min,WANG Keren .  Broadband Underdetermined Direction of Arrival Estimation Based on
 Continuous Sparse Recovery[J]. Journal of Shanghai Jiaotong University, 2017
, 51(9) : 1131 -1137 . DOI: 10.16183/j.cnki.jsjtu.2017.09.017

References

 [1]刘晓军, 刘聪锋, 廖桂生. 窄带信号频率和角度估计新方法[J]. 西安电子科技大学学报: 自然科学版, 2010, 37(3): 481486.
LIU Xiaojun, LIU Congfeng, LIAO Guisheng. Novel method for the narrowband signal frequency and angle estimation[J]. Journal of Xidian University:  Nature Science Edition, 2010, 37(3): 481486.
[2]沈志博, 赵国庆, 董春曦, 等. 基于压缩感知的频率和DOA联合估计算法[J]. 航空学报, 2014, 35(5): 13571364.
SHEN Zhibo, ZHAO Guoqing, DONG Chunxi, et al. United frequency and DOA estimation algorithm based on compressed sensing[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):  13571364.
[3]刘聪锋, 廖桂生. 宽带接收机的窄带信号频率和二维角度估计新方法[J]. 电子学报, 2009, 37(3): 523528.
LIU Congfeng, LIAO Guisheng. Novel method of narrow band signal frequency and 2D angle estimation for wide band receiver[J]. Acta Electronica Sinica, 2009, 37(3):  523528.
[4]沈志博, 董春曦, 黄龙, 等. 基于压缩感知的宽频段二维DOA估计算法[J]. 电子与信息学报, 2014, 36(12):  29352941.
SHEN Zhibo, DONG Chunxi, HUANG Long, et al. Broadband 2D DOA estimation based on compressed sensing[J]. Journal of Electronics & Information Technology, 2014, 36(12): 29352941.
[5]李鹏飞, 张旻, 钟子发, 等. 基于空域稀疏表示的宽频段DOA估计[J].电子与信息学报, 2012, 34(2): 404409.
LI Pengfei, ZHANG Min, ZHONG Zifa, et al. Broadband DOA estimation based on sparse representation in spatial frequency domain[J]. Journal of Electronics & Information Technology, 2012, 34(2): 404409.
[6]HERMAN M, STROHMER T. General deviants:  An analysis of perturbations in compressive sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):  342349.
[7]PAL P, VAIDYANATHAN P P. Nested arrays:  A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transaction on Signal Processing, 2010, 58(8):  41674181.
[8]PAL P, VAIDYANATHAN P P. Sparse sensing with coprime samplers and arrays[J]. IEEE Transaction on Signal Process, 2011, 59(2):  573586.
[9]HE Z Q, SHI Z P, HUANG L. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2015, 22(4):  435439.
[10]SHEN Q , LIU W, CUI W, et al. Lowcomplexity directionofarrival estimation based on wideband coprime arrays[J]. IEEE Transactions on Audio, Speech and Language Processing, 2015, 23(9): 14451456.
[11]樊劲宇, 顾红, 苏卫民, 等. 基于张量分解的互质阵MIMO雷达目标多参数估计方法[J]. 电子与信息学报, 2015, 37(4):  933938.
FAN Jinyu, GU Hong, SU Weimin, et al. Coprime MIMO radar multiparameter estimation based on tensor decomposition[J]. Journal of Electronics & Information Technology, 2015, 37(4):  933938.
[12]QIN S, ZHANG Y D, AMIN M G. Generalized coprime array configurations for directionofarrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6):  13771390.
[13]SHEN Z B, DONG C X, DONG Y Y, et al. Broadband DOA estimation based on nested arrays[J]. International Journal of Antennas and Propagation, 2015, 29(3):  113118.
[14]L W, WANG H. Joint DOA and frequency estimation based on spatiotemporal coprime sampling[C]∥Wireless Communications & Signal Processing (WCSP), 2015 International Conference on. New Zealand: IEEE, 2015:  15.
[15]CANDS E J, FERNANDEZ GRANDA C. Superresolution from noisy data[J]. Journal of Fourier Analysis and Applications, 2013, 19(6):  12291254.
[16]CANDS E J, FERNANDEZ GRANDA C. Towards a mathematical theory of super resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6):  906956.
[17]GRANT  M, BOYD S. CVX:  Matlab software for disciplined convex programming, version 1.21[J]. Global Optimization, 2008: 155210.
Options
Outlines

/