The sound insulation properties of honeycomb sandwich structure with different core thicknesses and cavity vacuum degrees of cavities have been studied in the paper. The theoretical analyses of the honeycomb sandwich in vertical incident wave are performed. The finite element models of honeycomb sandwich and double plates are established by using finite element software. The numerical analysis results show that the sound insulation performance of honeycomb sandwich in different frequency bands can be improved with increasing the vacuum degree and core thickness, especially in the middle and highfrequency bands. The core thickness and vacuum degree chosen by finite element method can achieve the requirements of sound insulation in the process of designing and applying of honeycomb sandwich for sound insulation structures to deal with different noise spectrum requirements. The conclusions drawn in this paper can be used to guide the future design of lowweight thin sound insulation structure.
XU Hui,LIU Tao,LEI Ye
. Effects of Core Thickness and Vacuum Degree on
Sound Insulation Properties of Honeycomb Sandwich[J]. Journal of Shanghai Jiaotong University, 2017
, 51(9)
: 1071
-1075
.
DOI: 10.16183/j.cnki.jsjtu.2017.09.008
[1]RAJARAM S, WANG T, NUTT S. Sound transmission loss of honeycomb sandwich panels[J]. Noise Control Engineering Journal, 2006, 54(2):106115.
[2]辛锋先, 张钱城, 卢天健. 轻质夹层材料的制备和振动声学性能[J]. 力学进展, 2010, 40(4): 375399.
XIN Fengxian, ZHANG Qiancheng, LU Tianjian. Advances in lightweight sandwich materials and sturctures: Manufacture and vibroacoustic performances[J]. Advances in Mechanics, 2010, 40(4): 375399.
[3]王志瑾, 徐庆华. V型皱褶夹芯板与隔声性能实验[J]. 振动工程学报, 2006, 19(1): 6569.
WANG Zhijin, XU Qinghua. Experiment research on soundproof characteristic for the sandwich plates with folded core[J]. Journal of Vibration Engineering, 2006, 19(1): 6569.
[4]沈承, 辛锋先, 金峰, 等. 对边简支加筋三明治板隔声性能研究[J]. 西安交通大学学报, 2011, 45(7): 2229.
SHEN Cheng, XIN Fengxian, JIN Feng, et al. Sound insulation behavior of simplysupported sandwich structure with parallel studs[J]. Journal of Xi’an Jiaotong University, 2011, 45(7): 2229.
[5]RAMANATHAN S K. Sound transmission properties of honeycomb panels and doublewalled structures[D]. Stockholm:KTH Royal Institute of Technology, 2012.
[6]JEONG C H, YEO M S, KIM K W. Experimental study on insulation performance and condensation characteristics of a vacuum insulated glass window[J]. Journal of Asian Architecture and Building Engineering, 2015, 14(3): 717724.
[7]MAYSENHLDER W. Sound transmission loss of vacuum insulation panels[J]. Journal of the Acoustical Society of America, 2008, 123(5): 38153821.
[8]BAETENS R, JELLE B P, THUE J V, et al. Vacuum insulation panels for building applications: A review and beyond[J]. Energy and Buildings, 2010, 42(2): 147172.
[9]GRIESE D, SUMMERS J D, THOMPSON L. The effect of honeycomb core geometry on the sound transmission performance of sandwich panels[J]. Journal of Vibration and Acoustics, 2015, 137(2): 021011.
[10]陈卫松, 邱小军. 多层板的隔声特性研究[J]. 南京大学学报(自然科学), 2005, 41(1): 9197.
CHEN Weisong, QIU Xiaojun. A study on sound insulation of multiple panels[J]. Journal of Nanjing University (Natural Sciences), 2005, 41(1): 9197.