Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (4): 525-533.doi: 10.16183/j.cnki.jsjtu.2022.423
• Electronic Information and Electrical Engineering • Previous Articles Next Articles
FENG Liwei1,2, SUN Liwen2,3, GU Huan2,3, LI Yuan1()
Received:
2022-10-28
Revised:
2022-12-09
Accepted:
2022-12-30
Online:
2024-04-28
Published:
2024-04-30
CLC Number:
FENG Liwei, SUN Liwen, GU Huan, LI Yuan. Industrial Process Fault Detection Based on Incremental Isometric Mapping and Double Local Density Method[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 525-533.
Tab.1
Fault detection rate of each method in TE process
组别 | KPCA | DKPCA | WKNN D/% | KSFA | IISOMAP-DLD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T2/% | SPE/% | T2/% | SPE/% | T2/% | ![]() ![]() ![]() | τ/% | τe/% | ||||
f1 | 98.86 | 99.14 | 98.54 | 99.43 | 98.86 | 99.00 | 98.57 | 99.14 | 99.54 | ||
f2 | 94.01 | 94.86 | 92.44 | 94.15 | 96.57 | 97.00 | 94.86 | 99.00 | 99.54 | ||
f3 | 0.43 | 15.55 | 0.57 | 1.41 | 20.86 | 25.00 | 52.29 | 69.00 | 19.86 | ||
f4 | 99.71 | 99.71 | 100 | 100 | 99.86 | 99.86 | 99.86 | 100 | 99.86 | ||
f5 | 0 | 30.10 | 0 | 0.70 | 37.71 | 42.00 | 57.71 | 73.71 | 14.71 | ||
f6 | 99.71 | 99.71 | 100 | 100 | 99.86 | 99.86 | 99.86 | 100 | 99.86 | ||
f7 | 99.71 | 99.71 | 100 | 100 | 99.86 | 99.86 | 99.86 | 100 | 99.86 | ||
f8 | 86.88 | 89.87 | 85.84 | 89.84 | 88.43 | 88.71 | 88.71 | 90.00 | 86.00 | ||
f9 | 3.42 | 17.26 | 1.57 | 3.34 | 22.00 | 17.71 | 47.00 | 62.14 | 15.57 | ||
f10 | 85.16 | 89.30 | 83.12 | 84.55 | 88.14 | 90.86 | 87.29 | 90.43 | 83.00 | ||
f11 | 96.86 | 98.43 | 94.13 | 98.00 | 97.86 | 98.14 | 92.00 | 98.71 | 95.29 | ||
f12 | 36.09 | 80.88 | 24.75 | 46.35 | 70.86 | 60.57 | 73.29 | 79.71 | 42.57 | ||
f13 | 94.01 | 95.01 | 94.28 | 94.99 | 94 | 94.43 | 93.71 | 95.57 | 93.71 | ||
f14 | 98.57 | 98.72 | 98.71 | 98.86 | 98.71 | 98.71 | 91.43 | 99.00 | 98.00 | ||
f15 | 0 | 3.57 | 0 | 0 | 13.29 | 7.29 | 58.86 | 67.14 | 7.57 | ||
f16 | 1.28 | 1.28 | 1.29 | 1.00 | 0.86 | 0.71 | 0.71 | 29.86 | 16.43 | ||
f17 | 83.17 | 84.88 | 82.98 | 84.55 | 84.71 | 84.57 | 82.43 | 86.86 | 83.00 | ||
f18 | 49.07 | 63.62 | 49.50 | 58.08 | 56.86 | 55.57 | 59.86 | 68.86 | 62.00 | ||
f19 | 91.87 | 95.72 | 89.56 | 94.42 | 94.57 | 96.00 | 94.43 | 96.71 | 95.14 | ||
f20 | 84.88 | 85.16 | 84.98 | 85.41 | 84.29 | 84.43 | 81.86 | 85.14 | 83.71 | ||
f21 | 1.43 | 1.28 | 1.43 | 1.00 | 0.71 | 0.71 | 1.41 | 29.29 | 15.86 |
[1] |
RAMAKRISHNA K, MRINMAYEE B, MUDDU M. Kantorovich distance based fault detection scheme for non-linear processes[J]. IEEE Access, 2022, 10: 1051-1067
doi: 10.1109/ACCESS.2021.3138696 URL |
[2] | 陈法法, 杨晓青, 陈保家, 等. 基于正交邻域保持嵌入与多核相关向量机的滚动轴承早期故障诊断[J]. 计算机集成制造系统, 2018, 24(8): 1946-1954. |
CHEN Fafa, YANG Xiaoqing, CHEN Baojia, et al. Early fault diagnosis of rolling bearing based on orthogonal neighbourhood preserving embedding and multi-kernel relevance vector machine[J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1946-1954. | |
[3] | GUO J Y, ZHONG L L, LI Y. Fault detection of multi-mode batch process based on statistics difference LPP[J]. Application Research of Computers, 2019, 36(1): 123-126. |
[4] |
CAO L J, CHUA K S, CHONG W K, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine[J]. Neurocomputing, 2003, 55(1/2): 321-336.
doi: 10.1016/S0925-2312(03)00433-8 URL |
[5] |
赵小强, 姚红娟. 改进邻域保持嵌入—独立元分析的间歇过程故障检测算法[J]. 计算机集成制造系统, 2021, 27(4): 1062-1071.
doi: 10.13196/j.cims.2021.04.010 |
ZHAO Xiaoqiang, YAO Hongjuan. Fault detection algorithm of batch process based on improved neighborhood preserving embedding-independent component analysis[J]. Computer Integrated Manufacturing Systems, 2021, 27(4): 1062-1071. | |
[6] | KONG X Y, LI Q, AN Q S, et al. Quality-related fault detection based on partial least squares score reconstruction[J]. Control Theory and Applications, 2020, 37(11): 2321-2332. |
[7] | 董顺, 李益国, 孙栓柱, 等. 基于状态空间主成分分析网络的故障检测方法[J]. 化工学报, 2018, 69(8): 237-245. |
DONG Shun, LI Yiguo, SUN Shuanzhu, et al. Fault detection method based on state space principal component analysis network[J]. CIESC Journal, 2018, 69(8): 237-245. | |
[8] |
LEE J, YOO C, LEE I. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers and Chemical Engineering, 2004, 28(9): 1837-1847.
doi: 10.1016/j.compchemeng.2004.02.036 URL |
[9] |
邓佳伟, 邓晓刚, 曹玉苹, 等. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605.
doi: 10.11949/j.issn.0438-1157.20181307 |
DENG Jiawei, DENG Xiaogang, CAO Yuping, et al. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA[J]. CIESC Journal, 2019, 70(7): 2594-2605. | |
[10] | KU W, ROBERT H, CHRISTOS G. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30: 175-196. |
[11] | 张佳鑫, 罗文嘉, 戴一阳. 基于CTA-DKPCA的化工过程故障诊断[J]. 控制工程, 2021, 28(5): 844-850. |
ZHANG Jiaxin, LUO Wenjia, DAI Yiyang. Chemical process fault diagnosis based on CTA-DKPCA[J]. Control Engineering, 2021, 28(5): 844-850. | |
[12] | 冯立伟, 张成, 李元. 基于PC-WKNN的多工况间歇过程故障检测方法研究[J]. 计算机应用研究, 2018, 35(4): 1130-1134. |
FENG Liwei, ZHANG Cheng, LI Yuan. Research on fault detection method of multi-mode intermittent process based on PC-WKNN[J]. Application Research of Computers, 2018, 35(4): 1130-1134. | |
[13] |
ZHANG C, GAO X W, LI Y, et al. Fault detection strategy based on weighted distance of k nearest neighbors for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 32(1): 75-81.
doi: 10.1109/TSM.2018.2857818 URL |
[14] |
WANG Q F, WANG S, WEI B K, et al. Weighted k-NN classification method of bearings fault diagnosis with multi-dimensional sensitive features[J]. IEEE Access, 2021, 9: 45428-45440.
doi: 10.1109/ACCESS.2021.3066489 URL |
[15] |
SHANG C, HUANG B, YANG F, et al. Probabilistic slow feature analysis-based representation learning from massive process data for soft sensor modeling[J]. AIChE Journal, 2015, 61(12): 4126-4139.
doi: 10.1002/aic.v61.12 URL |
[16] | BOHMER W, GRUNEWALDER S, NICKISCH H, et al. Regularized sparse kernel slow feature analysis[C]// European Conference on Machine Learning and Knowledge Discovery in Databases-Volume Part I. Heidelberg, Germany: Springer, 2011: 235-248. |
[17] | 卢依容. 基于核慢特征分析算法的故障检测与诊断[D]. 上海: 上海交通大学, 2015. |
LU Yirong. Fault detection and diagnosis based on kernel slow feature analysis algorithm[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
[18] |
ZHANG H, TIAN X, CAI L. Nonlinear process fault diagnosis using kernel slow feature discriminant analysis[J]. IFAC Papersonline, 2015, 48(21): 607-612.
doi: 10.1016/j.ifacol.2015.09.593 URL |
[19] | 黄健, 杨旭, 陈先中. 基于故障相关慢特征分析的过程监测方法[J]. 高校化学工程学报, 2020, 34(5): 1290-1296. |
HUANG Jian, YANG Xu, CHEN Xianzhong. Process monitoring method based on fault related slow characteristic analysis[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1290-1296. | |
[20] |
TENENBAUM J, SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
doi: 10.1126/science.290.5500.2319 pmid: 11125149 |
[21] | ZHANG Y, LI B W, WANG Z B, et al. Fault diagnosis of rotating machine by isometric feature mapping[J]. Journal of Mechanical Science & Technology, 2013, 27(11): 3215-3221. |
[22] |
张妮, 田学民, 蔡连芳. 基于RISOMAP的非线性过程故障检测方法[J]. 化工学报, 2013, 64(6): 2125-2130.
doi: 10.3969/j.issn.0438-1157.2013.06.031 |
ZHANG Ni, TIAN Xuemin, CAI Lianfang. Nonlinear process fault detection method based on RISOMAP[J]. CIESC Journal, 2013, 64(6): 2125-2130. | |
[23] | COX T, COX M. Multidimensional scaling[J]. Journal of the Royal Statistical Society, 2001, 46(2): 1050-1057. |
[24] | NASIR S, HAEWOON N, MIAN I U H, et al. A survey on multidimensional scaling[J]. ACM Computing Surveys (CSUR), 2018, 51(3): 471-496. |
[25] | LAW M, JAIN A. Incremental nonlinear dimensionality reduction by manifold learning[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(3): 377-391. |
[26] | SHANBHAG D N, RAO C R. Handbook of statistics stochastic processes: Theory and methods[M]. Amsterdam,Netherlands: Elsevier, 2001. |
[27] | DENG X, TIAN X, CHEN S, et al. Nonlinear process fault diagnosis based on serial principal component analysis[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(3): 560-572. |
[28] |
郭金玉, 李文涛, 李元. 在线压缩核主元分析的自适应过程监控[J]. 上海交通大学学报, 2022, 56(10): 1397-1408.
doi: 10.16183/j.cnki.jsjtu.2021.084 |
GUO Jinyu, LI Wentao, LI Yuan. Adaptive process monitoring based on on-line compressed kernel principal component analysis[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1397-1408. | |
[29] | ZHONG X, HAN M, QIU T, et al. Fault diagnosis of complex process using sparse kernel local fisher discriminant analysis[J]. IEEE Transactions on Neural Networks & Learning Systems, 2020, 31(5): 1581-1591. |
[30] | BATHELT A, RICKER N, JELALI M. Revision of the Tennessee Eastman process model[J]. IFAC PapersOnLine, 2015, 48(8): 309-314. |
[1] | LIU Yi, ZHANG Kailin, SHAO Shuai, XIANG Hongxu. Investigation on Steady-State Thermal Performance of Gear Box Based on Thermal-Fluid-Solid Coupling [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 666-674. |
[2] | WANG Hongxin, XU Degang, ZHOU Kaiwen, LI Linwen, WEN Xin. Data-Driven Method of Modeling Sparse Flow Field Data [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 684-690. |
[3] | GAO Bo, LI Fei, SHI Lun, TAO Peng, SHI Zhengang, ZHANG Chao, PENG Jie, ZHAO Yiyi. A Low-Carbon Interactive Management Strategy for Community Integrated Energy System Based on Real-Time Carbon Intensity Assessment [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 580-591. |
[4] | Li Pengju, Fu Rongchang, Yang Xiaozheng, Wang Kun. Dynamic Response of Idiopathic Scoliosis and Kyphosis Spine [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492. |
[5] | KHATUA Debnarayan, DE Anupam, KAR Samarjit, SAMANTA Eshan, SEKH Arif Ahmed, GUHA ADHYA Debashree. Fuzzy Dynamic Optimal Model for COVID-19 Epidemic in India Based on Granular Differentiability [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 545-554. |
[6] | Li Han, Shi Guohong, Liu Zhao, Zhu Ping. Cooperative Iteration Matching Method for Aligning Samples from Heterogeneous Industrial Datasets [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 375-384. |
[7] | Li Kai, Huang Wenhan, Li Chenchen, Deng Xiaotie. Exploiting a No-Regret Opponent in Repeated Zero-Sum Games [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 385-398. |
[8] | JIANG Jie, CHEN Lijun, CHAI Wencheng, AI Yonglin, OU Xiaoduo, GONG Jian. Force and Deformation Analysis of H(t)-T Loaded Pile Based on Pasternak Foundation Model [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 60-69. |
[9] | LI Longyue, WANG Wenhao, PI Li, JIA Zhonghui, ZHAO Huizhen. Overview of Simulation and Deduction Methods for Air Defense and Anti-Missile Warfare [J]. Air & Space Defense, 2025, 8(1): 48-53. |
[10] | LI Yi, OU Shuyan, LIANG Weidong, DONG Jiabao, ZHUANG Zhidong. Numerical Simulation of Rocket Fairing Spin Separation in Low-Altitude High-Dynamic-Pressure Environment [J]. Air & Space Defense, 2025, 8(1): 102-108. |
[11] | TANG Jianguo1, 2, MAO Jinghang1, 2, LIU Mingyue1, 2. Design and Hierarchical Sliding Mode Path Tracking of Deep-Sea Lander with Rudder [J]. Ocean Engineering Equipment and Technology, 2025, 12(1): 106-118. |
[12] | ZHANG Yueyao, QIAO Feng, LÜ Xiang, ZHANG Tianyuan, HAN Rui, LI Shuai. Pulsating Bubble Collapse and Jet Characteristics Near the Nozzle of Underwater Tube [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 99-110. |
[13] | ZHANG Lei, FENG Shaoxiong, TAN Kun, GUO Tao, SONG Chengguo, CHU Xiumin, MIAO Yang. A Design Method of Inland River Channel Based on Hydrodynamic Response of Ship [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 89-98. |
[14] | XIAO Changsheng, ZHOU Xiaojun, ZHU Mixin. Maintenance Modeling of Remanufacturing Systems in Variable Working Condition with Coupling of Production Scheduling and Reliability [J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1211-1220. |
[15] | CHEN Yiren, YAO Jinyu, LI Mingxuan, ZHANG Xinshu. Hydrodynamic Performance of a Barge-Type Floating Offshore Wind Turbine with Moonpool [J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 965-982. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 285
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||