Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (2): 127-140.doi: 10.16183/j.cnki.jsjtu.2022.500
• Naval Architecture, Ocean and Civil Engineering • Next Articles
ZHANG Nianfan1,2, XIAO Longfei1,2(), CHEN Gang1,3
Received:
2022-12-07
Revised:
2023-01-14
Accepted:
2023-02-10
Online:
2024-02-28
Published:
2024-03-04
CLC Number:
ZHANG Nianfan, XIAO Longfei, CHEN Gang. A Review of Numerical Studies of Wave Impacts on Marine Structures[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 127-140.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.500
Tab.1
Advantages, disadvantages, and applicability of different numerical methods
数值方法 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
BEM | ①降低了求解问题的维数,减小计算量 ②能够方便地处理无界区域问题 ③求解精度较高 | ①难以求解非线性问题 ②需要找到合适的格林函数 | 一般用于求解线性水动力问题 |
FDM | ①形式简单,适用性强 ②容易构造出高精度格式 | 对于复杂流体区域的边界形状处理不方便,计算精度易受影响 | 主要适用于结构网格 |
FEM | ①受求解区域单元形状划分的限制低 ②灵活性强,应用范围广 | ①求解复杂问题的耗时长,对计算资源要求高 ②无法较好地处理无界区域问题 | 适用于处理具有复杂几何边界的流场及复杂因素(材料、边界条件)的组合问题 |
FVM | ①离散方程具有很好的守恒性 ②对网格的适应性强 ③在流固耦合分析中,能够与有限元法较好地结合 | 形式复杂,不易提高计算精度 | 适用于流场有大梯度或间断的流动 |
SPH | ①能够更好地模拟自由表面流动 ②计算精度不受网格质量的限制 ③对介质的连续性不要求 | ①边界条件的施加存在难度 ②存在非物理性振荡问题 | 适用于强对流、大变形、高能量流动问题 |
MPS | ①算法简洁高效,数值收敛性好 ②能够与其他网格方法耦合使用 ③无需考虑网格划分问题 | 存在压力振荡现象 | 适用于自由面大变形流动等问题 |
Tab.3
Commonly used numerical wave-making methods
数值造波方法 | 方法描述 | 优点 | 缺点 |
---|---|---|---|
仿物理造波 | 借鉴物理水池造波原理,采用动网格技术模拟造波板的往复运动进行实现 | ①原理简单 ②易于在物理水池中验证 | ①需要求解网格运动,计算效率偏低 ②无法模拟斜浪和多向波浪的生成 |
速度入口边界造波 | 基于波浪理论,以边界条件形式给出入口边界处的波面形状和水质点速度,随着波浪向计算域内传播,从而实现数值造波 | ①计算效率高 ②使用灵活,可用于复杂波浪的模拟 | 需要配合有效的消波手段和质量修正方法,以保证数值计算的质量守恒 |
源项造波 | 在动量方程中添加质量源项以实现数值造波 | 可以同时实现数值造波、消波和消除二次反射波的影响 | 对于复杂的三维黏性流体问题,难以给出准确的造波源项表达式 |
Tab.4
Commonly used free surface treating methods
自由液面处理方法 | 方法描述 | 优点 | 缺点 |
---|---|---|---|
VOF法 | 通过计算网格单元中流体所占网格体积的比例,实现对自由面位置的捕捉 | ①良好的质量守恒特性 ②易于实现 | ①依赖网格的细化程度 ②需要进行界面重构,对复杂尖锐界面的模拟效果不理想 |
Level-Set法 | 将两相流的交界面用Level-Set函数的零等值面表示,其中Level-Set函数通常选为带符号的距离函数 | ①能够计算处交界面的曲率、法向向量等几何参数 ②模拟出的自由面形状光滑 | Level-Set 函数的重初始化,可能导致质量不守恒,且会增加计算成本 |
MAC法 | 通过设置标记点的方式跟踪自由面 | 标记点是质量点,可以不参与计算,无需考虑稳定性问题 | ①计算效率较低 ②需要设置相当多的标记点才能得到较准确的自由面 |
Tab.5
Summary of numerical tank investigations on the wave impact problem
文献 | 结构物 | 自由面处理 | 造波/消波方法 | 波浪 | 数值计算物理量 |
---|---|---|---|---|---|
Choi等[ | 竖直和倾斜立柱 | VOF法 | 源项造波/人工阻尼消波 | 破碎波 | (破碎)波浪砰击力 |
Kamath等[ | 直立圆柱 | Level-Set法 | 波浪松弛区域法[ | 规则波(破碎) | 波浪砰击力 |
Bihs等[ | 直立圆柱、矩形墩柱 | Level-Set法 | 波浪松弛区域法 | 规则波(破碎)、 孤立波 | (破碎)波浪作用力 |
Wang等[ | 半潜式平台 | VOF法 | 源项造波/阻尼项消波 | 内孤立波 | 水平波浪力、垂向波浪力、纵摇力矩 |
Ding等[ | 半潜式平台 | VOF法 | 波浪松弛区域法 | 内孤立波 | 水平与垂向波浪力系数、纵摇力矩系数 |
Henry等[ | 摆式波浪能转换装置 | VOF法/ SPH法 | 源项造波/阻尼项消波 | 五阶Stokes波 | 砰击压力、波浪板的转动角度 |
Martínez-Ferrer 等[ | 摆式波浪能转换装置 | VOF法 | 仿物理造波/主动式消波 | 规则波、聚焦波 | 砰击压力、波浪板的转动角度 |
Shibata等[ | 油轮 | MPS法 | 边界的粒子数变化 | 规则波 | 垂荡位移、纵摇角 |
[1] | VON KÁRMÁN T. The impact on seaplane floats during landing[R]. Washington D.C. USA: National Advisory Committee for Aeronautics, 1929. |
[2] |
KAPSENBERG G K. Slamming of ships: Where are we now?[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1947): 2892-2919.
doi: 10.1098/rsta.2011.0118 URL |
[3] |
IBRAHIM R A. Assessment of breaking waves and liquid sloshing impact[J]. Nonlinear Dynamics, 2020, 100(3): 1837-1925.
doi: 10.1007/s11071-020-05605-7 |
[4] | BUCHNER B. The impact of green water on FPSO design[C]// Offshore Technology Conference. Houston, Texas, USA: OTC, 1995: 45-57. |
[5] | HENRY A, SCHMITT P, WHITTAKER T, et al. The characteristics of wave impacts on an oscillating wave surge converter[C]// The Twenty-third International Offshore and Polar Engineering Conference. Anchorage, Alaska, USA: ISOPE, 2013: 566-573. |
[6] |
CUOMO G, ALLSOP W, BRUCE T, et al. Breaking wave loads at vertical seawalls and breakwaters[J]. Coastal Engineering, 2010, 57(4): 424-439.
doi: 10.1016/j.coastaleng.2009.11.005 URL |
[7] | HAYATDAVOODI M, CENGIZ ERTEKIN R. Review of wave loads on coastal bridge decks[J]. Applied Mechanics Reviews, 2016, 68(3): 1-16. |
[8] | BAARHOLM R, FALTINSEN O M, HERFJORD K. Wave impact on decks of floating platforms[C]// Proceedings of the Eighth International Symposium on Practical Design of Ships and Other Floating Structures. Shanghai, China: Elsevier Science Ltd., 2001: 621-627. |
[9] |
CHELLA M A, TØRUM A, MYRHAUG D. An overview of wave impact forces on offshore wind turbine substructures[J]. Energy Procedia, 2012, 20: 217-226.
doi: 10.1016/j.egypro.2012.03.022 URL |
[10] |
KAISER M J, YU Y, JABLONOWSKI C J. Modeling lost production from destroyed platforms in the 2004—2005 Gulf of Mexico hurricane seasons[J]. Energy, 2009, 34(9): 1156-1171.
doi: 10.1016/j.energy.2009.04.032 URL |
[11] |
ZHANG N, XIAO L, GUO Y, et al. Parametric study of wave impact pressure impulse and characteristic pressure on a square column with overhanging deck[J]. Ocean Engineering, 2022, 258: 111722.
doi: 10.1016/j.oceaneng.2022.111722 URL |
[12] |
ZHAO X, YE Z, FU Y, et al. A CIP-based numerical simulation of freak wave impact on a floating body[J]. Ocean Engineering, 2014, 87: 50-63.
doi: 10.1016/j.oceaneng.2014.05.009 URL |
[13] | WAGNER H. Über stoß-und gleitvorgänge an der oberfläche von flüssigkeiten[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193-215. |
[14] |
ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593-612.
doi: 10.1017/S002211209300028X URL |
[15] | ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]// Proceedings of the 21st Symposium on Naval Hydrodynamics. Washington D.C., USA: National Academy Press, 1996: 408-423. |
[16] |
WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277-289.
doi: 10.1016/j.jfluidstructs.2004.01.001 URL |
[17] |
SWIDAN A, AMIN W, RANMUTHUGALA D, et al. Numerical prediction of symmetric water impact loads on wedge shaped hull form using CFD[J]. World Journal of Mechanics, 2013, 3(8): 311-318.
doi: 10.4236/wjm.2013.38033 URL |
[18] |
YU P, ZHANG B, YANG Z, et al. Numerical investigation on the shallow water entry of wedges[J]. IEEE Access, 2019, 7: 170062-170076.
doi: 10.1109/ACCESS.2019.2954141 |
[19] |
WANG S, SOARES C G. Numerical study on the water impact of 3D bodies by an explicit finite element method[J]. Ocean Engineering, 2014, 78: 73-88.
doi: 10.1016/j.oceaneng.2013.12.008 URL |
[20] |
FACCI A L, PANCIROLI R, UBERTINI S, et al. Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets[J]. Journal of Fluids and Structures, 2015, 55: 484-500.
doi: 10.1016/j.jfluidstructs.2015.03.018 URL |
[21] |
FACCI A L, PORFIRI M, UBERTINI S. Three-dimensional water entry of a solid body: A computational study[J]. Journal of Fluids and Structures, 2016, 66: 36-53.
doi: 10.1016/j.jfluidstructs.2016.07.015 URL |
[22] |
OGER G, DORING M, ALESSANDRINI B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822.
doi: 10.1016/j.jcp.2005.09.004 URL |
[23] | ZHANG G, HU T, SUN Z, et al. A δSPH-SPIM coupled method for fluid-structure interaction problems[J]. Journal of Fluids and Structures, 2021, 101: 1-22. |
[24] | ZHANG Y, TANG Z, WAN D. Simulation of water entry of a free-falling wedge by improved MPS method[C]// The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece: ISOPE, 2016: 220-227. |
[25] |
ZHANG K, SUN Y J, SUN Z G, et al. An efficient MPS refined technique with adaptive variable-size particles[J]. Engineering Analysis with Boundary Elements, 2022, 143: 663-676.
doi: 10.1016/j.enganabound.2022.07.013 URL |
[26] |
GU H B, QIAN L, CAUSON D M, et al. Numerical simulation of water impact of solid bodies with vertical and oblique entries[J]. Ocean Engineering, 2014, 75: 128-137.
doi: 10.1016/j.oceaneng.2013.11.021 URL |
[27] |
KRASTEV V K, FACCI A L, UBERTINI S. Asymmetric water impact of a two dimensional wedge: A systematic numerical study with transition to ventilating flow conditions[J]. Ocean Engineering, 2018, 147: 386-398.
doi: 10.1016/j.oceaneng.2017.10.048 URL |
[28] |
HU Z, ZHAO X, LI M, et al. A numerical study of water entry of asymmetric wedges using a CIP-based model[J]. Ocean Engineering, 2018, 148: 1-16.
doi: 10.1016/j.oceaneng.2017.11.011 URL |
[29] |
BILANDI R N, JAMEI S, ROSHAN F, et al. Numerical simulation of vertical water impact of asymmetric wedges by using a finite volume method combined with a volume-of-fluid technique[J]. Ocean Engineering, 2018, 160: 119-131.
doi: 10.1016/j.oceaneng.2018.04.043 URL |
[30] | SHEN Z, WAN D. Numerical simulation of sphere water entry problem based on VOF and dynamic mesh methods[C]// The Twenty-first International Offshore and Polar Engineering Conference. Maui, Hawaii, USA: ISOPE, 2011: 695-702. |
[31] |
ZHANG Y, ZOU Q, GREAVES D, et al. A level set immersed boundary method for water entry and exit[J]. Communications in Computational Physics, 2010, 8(2): 265-288.
doi: 10.4208/cicp URL |
[32] | CHENG R Y K. The interaction between a solid body and viscous fluid by marker-and-cell method[R]. Virginia, USA: Old Dominion University, 1976. |
[33] |
BAARHOLM R, FALTINSEN O M. Wave impact underneath horizontal decks[J]. Journal of Marine Science and Technology, 2004, 9(1): 1-13.
doi: 10.1007/s00773-003-0164-4 URL |
[34] | IWANOWSKI B, GRIGORIAN H, SCHERF I. Subsidence of the Ekofisk platforms: Wave in deck impact study—Various wave models and computational methods[C]// International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway: ASME, 2002: 95-102. |
[35] |
REN B, WANG Y. Numerical simulation of random wave slamming on structures in the splash zone[J]. Ocean Engineering, 2004, 31(5-6): 547-560.
doi: 10.1016/j.oceaneng.2003.10.006 URL |
[36] |
QIN H, TANG W, XUE H, et al. Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space[J]. Applied Ocean Research, 2017, 64: 155-168.
doi: 10.1016/j.apor.2017.02.008 URL |
[37] | COOKER M J, PEREGRINE D H. Violent water motion at breaking-wave impact[J]. Coastal Engineering Proceedings, 1990 (22): 164-176. |
[38] |
ZHANG S, YUE D K P, TANIZAWA K. Simulation of plunging wave impact on a vertical wall[J]. Journal of Fluid Mechanics, 1996, 327: 221-254.
doi: 10.1017/S002211209600852X URL |
[39] | XIE Z, LU L, STOESSER T, et al. Numerical simulation of three-dimensional breaking waves and its interaction with a vertical circular cylinder[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(5): 800-804. |
[40] | CHEN H C. Time-domain simulation of nonlinear wave impact loads on fixed offshore platform and decks[J]. International Journal of Offshore and Polar Engineering, 2010, 20(4): 275-283. |
[41] | LU X, KUMAR P, BAHUGUNI A, et al. A CFD study of focused extreme wave impact on decks of offshore structures[C]// International Conference on Offshore Mechanics and Arctic Engineering. San Francisco, California, USA: ASME, 2014: 1-10. |
[42] | JOSE J, CHOI S J, LEE K H, et al. Breaking wave forces on an offshore wind turbine foundation (jacket type) in the shallow water[C]// The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece: ISOPE, 2016: 164-172. |
[43] |
WEI Z, DALRYMPLE R A. Numerical study on mitigating tsunami force on bridges by an SPH model[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 365-380.
doi: 10.1007/s40722-016-0054-6 URL |
[44] | 邓燕飞, 杨建民, 肖龙飞, 等. 极端波浪与海洋结构物的强非线性作用研究综述[J]. 船舶力学, 2016, 20(7): 917-928. |
DENG Yanfei, YANG Jianmin, XIAO Longfei, et al. A review on the nonlinear interactions between extreme waves and marine structures[J]. Journal of Ship Mechanics, 2016, 20(7): 917-928. | |
[45] | LIANG X, YANG J, XIAO L, et al. Numerical study of air gap response and wave impact load on a moored semi-submersible platform in predetermined irregular wave train[C]// International Conference on Offshore Mechanics and Arctic Engineering. Shanghai, China: ASME, 2010: 515-524. |
[46] | KIM J S, YOO S O, KIM H J, et al. Experimental and numerical study of horizontal wave impact loads for a semi-submersible drilling unit[C]// International Conference on Offshore Mechanics and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019: 1-12. |
[47] | RIVERA-ARREBA I, BRUINSMA N, BACHYNSKI E E, et al. Modeling of a semisubmersible floating offshore wind platform in severe waves[J]. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141(6): 1-11. |
[48] | ZHOU Y, XIAO Q, LIU Y, et al. Investigation of focused wave impact on floating platform for offshore floating wind turbine: A CFD study[C]// International Conference on Offshore Mechanics and Arctic Engineering. Glasgow, Scotland, UK: ASME, 2019: 1-11. |
[49] | RUDMAN M, CLEARY P, LEONTINI J, et al. Rogue wave impact on a semi-submersible offshore platform[C]// International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal: ASME, 2008: 887-894. |
[50] |
RUDMAN M, CLEARY P W. Rogue wave impact on a tension leg platform: The effect of wave incidence angle and mooring line tension[J]. Ocean Engineering, 2013, 61: 123-138.
doi: 10.1016/j.oceaneng.2013.01.006 URL |
[51] |
RUDMAN M, CLEARY P W. The influence of mooring system in rogue wave impact on an offshore platform[J]. Ocean Engineering, 2016, 115: 168-181.
doi: 10.1016/j.oceaneng.2016.02.027 URL |
[52] |
PAN K, IJZERMANS R H A, JONES B D, et al. Application of the SPH method to solitary wave impact on an offshore platform[J]. Computational Particle Mechanics, 2016, 3(2): 155-166.
doi: 10.1007/s40571-015-0069-0 URL |
[53] | 赵艳. 强非线性波与海洋浮式结构物的相互作用[D]. 镇江: 江苏科技大学, 2014. |
ZHAO Yan. Simulation of strongly nonlinear wave and its interaction with floating structure[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014. | |
[54] | 赵峰, 吴乘胜, 张志荣, 等. 实现数值水池的关键技术初步分析[J]. 船舶力学, 2015, 19(10): 1209-1220. |
ZHAO Feng, WU Chengsheng, ZHANG Zhirong, et al. Preliminary analysis of key issues in the development of numerical tank[J]. Journal of Ship Mechanics, 2015, 19(10): 1209-1220. | |
[55] | KIM C H, CLEMENT A H, TANIZAWA K. Recent research and development of numerical wave tanks—A review[J]. International Journal of Offshore and Polar Engineering, 1999, 9(4): 241-256. |
[56] | TANIZAWA K. The state of the art on numerical wave tank[C]// Proceedings of 4th Osaka Colloquium on Seakeeping Performance of Ships. Osaka, Japan: Osaka Prefecture University, 2000: 95-114. |
[57] |
CHOI S J, LEE K H, GUDMESTAD O T. The effect of dynamic amplification due to a structure’s vibration on breaking wave impact[J]. Ocean Engineering, 2015, 96: 8-20.
doi: 10.1016/j.oceaneng.2014.11.012 URL |
[58] |
KAMATH A, CHELLA M A, BIHS H, et al. Breaking wave interaction with a vertical cylinder and the effect of breaker location[J]. Ocean Engineering, 2016, 128: 105-115.
doi: 10.1016/j.oceaneng.2016.10.025 URL |
[59] |
JACOBSEN N G, FUHRMAN D R, FREDSØE J. A wave generation toolbox for the open-source CFD library: OpenFoam©[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073-1088.
doi: 10.1002/fld.v70.9 URL |
[60] |
BIHS H, KAMATH A, CHELLA M A, et al. A new level set numerical wave tank with improved density interpolation for complex wave hydrodynamics[J]. Computers & Fluids, 2016, 140: 191-208.
doi: 10.1016/j.compfluid.2016.09.012 URL |
[61] |
WANG X, ZHOU J F, WANG Z, et al. A numerical and experimental study of internal solitary wave loads on semi-submersible platforms[J]. Ocean Engineering, 2018, 150: 298-308.
doi: 10.1016/j.oceaneng.2017.12.042 URL |
[62] |
DING W, AI C, JIN S, et al. 3D numerical investigation of forces and flow field around the semi-submersible platform in an internal solitary wave[J]. Water, 2020, 12(1): 1-21.
doi: 10.3390/w12010001 URL |
[63] |
LI Y, LIN M. Regular and irregular wave impacts on floating body[J]. Ocean Engineering, 2012, 42: 93-101.
doi: 10.1016/j.oceaneng.2012.01.019 URL |
[64] |
MARTÍNEZ-FERRER P J, QIAN L, MA Z, et al. Improved numerical wave generation for modelling ocean and coastal engineering problems[J]. Ocean Engineering, 2018, 152: 257-272.
doi: 10.1016/j.oceaneng.2018.01.052 URL |
[65] |
SHIBATA K, KOSHIZUKA S, SAKAI M, et al. Lagrangian simulations of ship-wave interactions in rough seas[J]. Ocean Engineering, 2012, 42: 13-25.
doi: 10.1016/j.oceaneng.2012.01.016 URL |
[1] | XU Haodong, YU Tongzhen, FAN Wei, LI Mingguang, LIU Nianwu. Influence of Slurry Diffusion on Drag Reduction During Pipe Jacking Cnstruction [J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1067-1074. |
[2] | SANG Xu, JIN Zheyan, YANG Zhigang, YU Fang. Numerical Study of Deformation and Breakup Processes of Water Droplets in Air Flow [J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 419-427. |
[3] | FENG Yangyang, DING Haoliang, HU Pingshan, YAN Bo. Steady-State Temperature Field Simulation of Injection Mold Based on Finite Volume Method [J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 461-467. |
[4] | GUO Tongbiao, ZHANG Ji, LI Xinliang. Direct Numerical Simulation of Strong Shock Wave and Boundary Layer Interactions in a Compression Corner [J]. Air & Space Defense, 2024, 7(2): 29-35. |
[5] | HONG Lei1 (洪蕾), XIAO Hao1 (肖皓), YE Jia2 (叶佳), MA Guohong1* (马国红). Numerical Simulation of Radial Ultrasonic Assisted MIG Welding Arc [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 330-338. |
[6] | LI Shuxun (李树勋), SHEN Hengyun* (沈珩云), LIU Bincai (刘斌才),HU Yinggang (胡迎港), MA Tingqian (马廷前). Pressure Pulse Response of High Temperature Molten Salt Check Valve Hit by Crystal Particles [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 271-279. |
[7] | HE Wenxuan, YE Maosheng, ZHANG Yu, ZHANG Yatai, DAI Xiaohui, ZHANG Qi. Evaluation of the Ultimate Strength of Suspension Chains under Wear Conditions [J]. Ocean Engineering Equipment and Technology, 2024, 11(1): 23-29. |
[8] | ZHU Xiaodong, ZHOU Dongrong, GAO Dingquan. Numerical Simulation of Coupled Dynamic Response of Integral Salvage of Large Tonnage Wreck [J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 203-212. |
[9] | GUAN Yanmin, YANG Caihong, KANG Zhuang, ZHOU Li. Application of an Improved GPU Acceleration Strategy for the Smoothed Particle Hydrodynamics Method [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 981-987. |
[10] | LI Muzhi, BAO Wenqian, WANG Xiucheng, ZHANG Yiming, YUAN Yuchao, TANG Wenyong. Collision Simulation Method and Protection Mechanism of Composite Fenders for Ships [J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 680-689. |
[11] | CHEN Hao, DAI Mengyi, HAN Zhaolong, ZHOU Dai, BAO Yan, TU Jiahuang. Aerodynamic Performance Optimization of MW-Level Large Vertical Axis Wind Turbine with Trailing Edge Flaps [J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 642-652. |
[12] | WANG Zhaoxi, ZHAI Shihui, ZHAO Fan, WANG Zhelan, XIE Xiayang. Numerical Simulation of the Multi-Input Multi-Output Random Vibration Tests Based on Pseudo Excitation Method [J]. Air & Space Defense, 2023, 6(2): 69-76. |
[13] | GAO Chang. Structural Emergency Response Analysis and Application for Deep-water Column Stabilised Units [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 95-100. |
[14] | QU Xiaoqi, LI Hongtao, TANG Guangyin, DU Haiyue, YANG Linlin. Research on Key Technologies of Dynamic Analysis and Numerical Simulation for the Floating Offshore Wind Turbine [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 72-78. |
[15] | LIU Zhongbo, HAN Qingliang, REN Shuangshuang, WANG Yan, FANG Kezhao. Modification of Velocity Formulations in a Two-Layer Boussinesq-Type Model for Water Waves [J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 177-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||