Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (7): 1007-1018.doi: 10.16183/j.cnki.jsjtu.2023.458
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
KANG Feng1, TAN Huochao1, SU Liwei1, JIAN Donglin1, WANG Shuai1, QIN Hao1(
), ZHANG Yongjun2
Received:2023-09-11
Revised:2023-10-31
Accepted:2023-11-08
Online:2025-07-28
Published:2025-07-22
Contact:
QIN Hao
E-mail:13914361435@163.com
CLC Number:
KANG Feng, TAN Huochao, SU Liwei, JIAN Donglin, WANG Shuai, QIN Hao, ZHANG Yongjun. Energy Services Demand Forecasting Combined with Feature Preferences and Bidirectional Long- and Short-Term Memory Networks[J]. Journal of Shanghai Jiao Tong University, 2025, 59(7): 1007-1018.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.458
Tab.1
Dataset information
| 序号 | 层级 | 数据来源 | 类型 | 内容 | 采样时间 |
|---|---|---|---|---|---|
| 1 | 区域 | 营销管理系统 | 用户区域 | 抄表区段 | 2019-01—2022-01 |
| 2 | 行业 | 营销管理系统 | 用户类型 | 用户电表类型(工/商/居) | 2019-01—2022-01 |
| 3 | 用户 | 营销管理系统 | 用户信息 | 行业类别、用户编号、电表数 | 2019-01—2022-01 |
| 4 | 用户 | 营销管理系统 | 用户信息 | 用户类别、行业类别 | 2019-01—2022-01 |
| 5 | 用户 | 营销管理系统 | 工单信息 | 业务子类、时间 | 2019-01—2022-01 |
| 6 | 用户 | 智慧营业厅 | 工单信息 | 业务子类、时间 | 2019-01—2022-01 |
| 5 | 电表 | 营销管理系统 | 电表信息 | 报装容量 | 2019-01—2022-01 |
| 6 | 电表 | 计量系统 | 电量电费 | 用户月用电量、电费 | 2019-01—2022-01 |
| [1] | BARJA MARTINEZ S. Artificial intelligence techniques for enabling Big Data services in distribution networks: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111459. |
| [2] | 葛磊蛟, 刘航旭, 孙永辉, 等. 智能配电网多元电力用户群体特性精准感知技术综述[J]. 电力系统自动化, 2023(5): 1-18. |
| GE Leijiao, LIU Hangxu, SUN Yonghui, et al. A review of accurate sensing technologies for multiple power user group characteristics in smart distribution networks[J]. Power System Automation, 2023(5): 1-18. | |
| [3] | 张勇军, 羿应棋, 李立浧, 等. 双碳目标驱动的新型低压配电系统技术展望[J]. 电力系统自化, 2022, 46(22): 1-12. |
| ZHANG Yongjun, YI Yingqi, LI Licheng, et al. Dual-carbon target-driven technology outlook of new low-voltage distribution system[J]. Power System Automation, 2022, 46(22): 1-12. | |
| [4] |
张亮, 屈刚, 李慧星, 等. 智能电网电力监控系统网络安全态势感知平台关键技术研究及应用[J]. 上海交通大学学报, 2021, 55 (Sup.2): 103-109.
doi: 10.16183/j.cnki.jsjtu.2021.S2.017 |
| ZHANG Liang, QU Gang, LI Huixing, et al. Research and application of key technology of network security situational awareness platform for smart grid power monitoring system[J]. Journal of Shanghai Jiao Tong University, 2021, 55 (Sup.2): 103-109. | |
| [5] | 朱天怡, 艾芊, 贺兴, 等. 基于数据驱动的用电行为分析方法及应用综述[J]. 电网技术, 2020, 40(9):3497-3507. |
| ZHU Tianyi, AI Qian, HE Xing, et al. A review of data-driven power usage behaviour analysis methods and applications[J]. Grid Technology, 2020, 40(9): 3497-3507. | |
| [6] |
李利娟, 刘海, 刘红良, 等. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854.
doi: 10.16183/j.cnki.jsjtu.2022.534 |
| LI Lijuan, LIU Hai, LIU Hongliang, et al. Sequence-to-point non-intrusive load decomposition incorporating external attention mechanisms[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 846-854. | |
| [7] | 孔祥玉, 马玉莹, 艾芊, 等. 新型电力系统多元用户的用电特征建模与用电负荷预测综述[J]. 电力系统自动化, 2023, 47(13): 2-17. |
| KONG Xiangyu, MA Yuying, AI Qian, et al. A review of power usage characteristics modelling and power load forecasting for multiple users in new power systems[J]. Power System Automation, 2023, 47(13): 2-17. | |
| [8] | CAMERO A, LUQUE G, BRAVO Y, et al. Customer segmentation based on the electricity demand signature: The Andalusian case[J]. Energies, 2018, 11(7): 1788-1803. |
| [9] |
朱州. 基于大数据分析的电力客户服务需求预测[J]. 沈阳工业大学学报, 2020, 42(4):368-372.
doi: 10.7688/j.issn.1000-1646.2020.04.02 |
|
ZHU Zhou. Electricity customer service demand forecasting based on big data analysis[J]. Journal of Shenyang University of Technology, 2020, 42(4): 368-372.
doi: 10.7688/j.issn.1000-1646.2020.04.02 |
|
| [10] | RAMOS S, SOARES J, CEMBRANEL S S, et al. Data mining techniques for electricity customer characterization[J]. Procedia Computer Science, 2021, 186: 475-488. |
| [11] | HE Y, WANG M, YU J, et al. Research on the hybrid recommendation method of retail electricity price package based on power user characteristics and multi-attribute utility in China[J]. Energies, 2020, 13(11): 2693-2710. |
| [12] | 王岩, 黄莹, 王文瑾, 等. 电力客户准确定位与立体画像多维构建研究[J]. 武汉理工大学学报(信息与管理工程版), 2023, 45(1): 156-159. |
| WANG Yan, HUANG Ying, WANG Wenjin, et al. Research on accurate positioning and multi-dimensional construction of three-dimensional portrait of electric power customers[J]. Journal of Wuhan University of Technology (Information and Management Engineering Edition), 2023, 45(1): 156-159. | |
| [13] | 张帝, 王韬, 朱吉然, 等. 基于LSTM-Attention融合的电力客户主动服务推荐方法[J]. 电力科学与技术学报, 2022, 37(2): 213-218. |
| ZHANG Di, WANG Tao, ZHU Jiran, et al. A proactive service recommendation method for electric power customers based on LSTM-Attention fusion[J]. Journal of Electric Power Science and Technology, 2022, 37(2): 213-218. | |
| [14] | 陈娟, 夏鹏, 梁晓伟, 等. 基于CSPSO-K-means算法的电力客户细分及定制化增值服务系统研究[J]. 微型电脑应用, 2021, 37(10): 90-93. |
| CHEN Juan, XIA Peng, LIANG Xiaowei, et al. Research on electricity customer segmentation and customised value-added service system based on CSPSO-K-means algorithm[J]. Microcomputer Applications, 2021, 37(10): 90-93. | |
| [15] | 邱桂华, 何引生, 邱楠海, 等. 考虑多气象因子累积影响的光伏发电功率预测[J]. 广东电力, 2022, 35(10): 20-28. |
| QIU Guihua, HE Yinsheng, QIU Nanhai, et al. Power prediction of photovoltaic power generation considering the cumulative effects of multiple meteorological factors[J]. Guangdong Electric Power, 2022, 35(10): 20-28. | |
| [16] |
李钰, 杨道勇, 刘玲亚, 等. 利用生成对抗网络实现水下图像增强[J]. 上海交通大学学报, 2022, 56(2): 134-142.
doi: 10.16183/j.cnki.jsjtu.2021.075 |
| LI Yu, YANG Daoyong, LIU Lingya, et al. Underwater image enhancement using generative adversarial networks[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 134-142. | |
| [17] |
龙周, 陈松坤, 王德禹. 基于SMOTE算法的船舶结构可靠性优化设计[J]. 上海交通大学学报, 2019, 53(1): 26-34.
doi: 10.16183/j.cnki.jsjtu.2019.01.004 |
| LONG Zhou, CHEN Songkun, WANG Deyu. Reliability optimisation design of ship structure based on SMOTE algorithm[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 26-34. | |
| [18] | 汪颖, 杨维, 肖先勇, 等. 基于去噪自编码器网络特征降维与改进小批优化K均值算法的海量用户用电行为聚类及分析[J]. 电力自动化设备, 2022, 42(6): 146-153. |
| WANG Ying, YANG Wei, XIAO Xianyong, et al. Clustering and analysis of massive users’ electricity consumption behaviour based on denoising self-encoder network feature dimensionality reduction and improved small batch optimization K-mean algorithm[J]. Power Automation Equipment, 2022, 42(6): 146-153. | |
| [19] | 肖庆追, 李捷, 陈鹤峰, 等. 基于组合模型的电力用户用电行为分层分类方法[J]. 电力系统及其自动化学报, 2023, 35(5): 82-88. |
| XIAO Qingzhui, LI Jie, CHEN Hefeng, et al. A hierarchical classification method for power users’ electricity consumption behaviour based on combinatorial model[J]. Journal of Power System and Automation, 2023, 35(5): 82-88. | |
| [20] | 邵振国, 林潇, 张嫣, 等. 基于特征集重构与多标签分类模型的谐波源定位方法[J]. 电力自动化设备, 2024, 44(2): 147-154. |
| SHAO Zhenguo, LIN Xiao, ZHANG Yan, et al. Harmonic source localisation method based on feature set reconstruction and multi-label classification model[J]. Power Automation Equipment, 2024, 44(2): 147-154. | |
| [21] | 杨志东, 丁建武, 陈广久, 等. 基于 LightGBM 和LSTM模型的电力大数据异常用电检测方法研究[J]. 电测与仪表, 2023, 21: 1-7. |
| YANG Zhidong, DING Jianwu, CHEN Guangjiu, et al. Research on anomalous power usage detection method of electric power big data based on LightGBM and LSTM models[J]. Electrical Measurement and Instrumentation, 2023, 21: 1-7. | |
| [22] |
孙欣, 王思敏, 谢敬东, 等. 考虑多维影响因素的改进Transformer-PSO短期电价预测方法[J]. 上海交通大学学报, 2024, 58(9): 1420-1431.
doi: 10.16183/j.cnki.jsjtu.2023.065 |
| SUN Xin, WANG Simin, XIE Jingdong, et al. Improved Transformer-PSO short-term electricity price forecasting method considering multidimensional influencing factors[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1420-1431. |
| [1] | GUO Weicheng,LI Beizhi,YANG Jianguo,ZHOU Qinzhi. Monitoring of Grinding Signals and Development of Wheel Wear Prediction Model [J]. Journal of Shanghai Jiaotong University, 2019, 53(12): 1475-1481. |
| [2] |
LUO Huayi,WANG Jingcheng,YANG Liwen,LI Xiaocheng.
Research and Application of Urban Water Demand Forecasting Based on Time Difference Coefficient [J]. Journal of Shanghai Jiao Tong University, 2017, 51(10): 1260-1267. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||