Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (6): 846-854.doi: 10.16183/j.cnki.jsjtu.2022.534
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
LI Lijuan1, LIU Hai1, LIU Hongliang2(), ZHANG Qingsong1, CHEN Yongdong1
Received:
2022-12-29
Revised:
2023-04-26
Accepted:
2023-05-22
Online:
2024-06-28
Published:
2024-07-05
CLC Number:
LI Lijuan, LIU Hai, LIU Hongliang, ZHANG Qingsong, CHEN Yongdong. Non-Intrusive Load Disaggregation Using Sequence-to-Point Integrating External Attention Mechanism[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 846-854.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.534
Tab.2
Comparison of each model in REDD dataset
设备 | ESAE | EMAE | ENDE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNN | T2V | CBAM | 本文 | CNN | T2V | CBAM | 本文 | CNN | T2V | CBAM | 本文 | |||
微波炉 | 0.889 | 0.485 | 0.373 | 0.323 | 19.681 | 20.066 | 20.712 | 22.481 | 0.996 | 0.751 | 0.689 | 0.722 | ||
冰箱 | 0.219 | 0.209 | 0.159 | 0.092 | 35.69 | 31.076 | 37.603 | 28.494 | 0.338 | 0.279 | 0.345 | 0.231 | ||
洗碗机 | 0.478 | 0.643 | 0.395 | 0.358 | 19.142 | 29.610 | 19.476 | 18.365 | 0.505 | 0.872 | 0.437 | 0.431 | ||
洗衣机 | 0.053 | 0.095 | 0.089 | 0.045 | 15.106 | 12.427 | 19.065 | 18.622 | 0.199 | 0.139 | 0.172 | 0.174 | ||
均值 | 0.410 | 0.358 | 0.254 | 0.205 | 23.450 | 23.295 | 23.421 | 21.991 | 0.510 | 0.510 | 0.411 | 0.390 |
Tab.3
Comparison of each model in UK-DALE dataset
设备 | ESAE | EMAE | ENDE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNN | T2V | CBAM | 本文 | CNN | T2V | CBAM | 本文 | CNN | T2V | CBAM | 本文 | |||
微波炉 | 0.100 | 0.877 | 0.719 | 0.028 | 5.732 | 10.318 | 7.447 | 6.042 | 0.613 | 0.984 | 0.606 | 0.594 | ||
冰箱 | 0.143 | 0.178 | 0.072 | 0.057 | 23.342 | 31.686 | 22.823 | 20.549 | 0.410 | 0.526 | 0.403 | 0.384 | ||
洗碗机 | 0.244 | 0.737 | 0.274 | 0.153 | 7.334 | 14.953 | 7.227 | 5.290 | 0.060 | 0.457 | 0.074 | 0.074 | ||
洗衣机 | 0.004 | 0.223 | 0.004 | 0.005 | 8.927 | 13.923 | 8.081 | 7.960 | 0.089 | 0.274 | 0.072 | 0.070 | ||
均值 | 0.122 | 0.504 | 0.267 | 0.061 | 11.333 | 17.720 | 11.394 | 9.960 | 0.293 | 0.560 | 0.288 | 0.280 |
[1] | 刘博, 栾文鹏. 基于负荷分解的用电数据云架构方案及应用场景[J]. 电网技术, 2016, 40(3): 791-796. |
LIU Bo, LUAN Wenpeng. Conceptual cloud solution architecture and application scenarios of power consumption data based on load disaggregation[J]. Power System Technology, 2016, 40(3): 791-796. | |
[2] | 郭红霞, 陆进威, 杨苹, 等. 非侵入式负荷监测关键技术问题研究综述[J]. 电力自动化设备, 2021, 41(1): 135-146. |
GUO Hongxia, LU Jinwei, YANG Ping, et al. Review on key techniques of non-intrusive load monito-ring[J]. Electric Power Automation Equipment, 2021, 41(1): 135-146. | |
[3] | HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12): 1870-1891. |
[4] | 邓晓平, 张桂青, 魏庆来, 等. 非侵入式负荷监测综述[J]. 自动化学报, 2022, 48(3): 644-663. |
DENG Xiaoping, ZHANG Guiqing, WEI Qinglai, et al. A survey on the non-intrusive load monitoring[J]. Acta Automatica Sinica, 2022, 48(3): 644-663. | |
[5] | 程祥, 李林芝, 吴浩, 等. 非侵入式负荷监测与分解研究综述[J]. 电网技术, 2016, 40(10): 3108-3117. |
CHENG Xiang, LI Linzhi, WU Hao, et al. A survey of the research on non-intrusive load monitoring and disaggregation[J]. Power System Technology, 2016, 40(10): 3108-3117. | |
[6] | WICHAKOOL W, REMSCRIM Z, ORJI U A, et al. Smart metering of variable power loads[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 189-198. |
[7] | PATEL S N, ROBERTSON T, KIENTZ J A, et al. At the flick of a switch: Detecting and classifying unique electrical events on the residential power line (nominated for the best paper award)[C]//International Conference on Ubiquitous Computing. Berlin, Germany: Springer, 2007: 271-288. |
[8] | 刘然. 结合改进最近邻法与支持向量机的住宅用电负荷识别研究[D]. 重庆: 重庆大学, 2014. |
LIU Ran. Research on household load identification combining improved nearest neighbour method and support vector machine[D]. Chongqing: Chongqing University, 2014. | |
[9] | FIGUEIREDO M, RIBEIRO B, DE ALMEIDA A. Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home[J]. IEEE Transactions on Instrumentation & Measurement, 2014, 63(2): 364-373. |
[10] | 祁兵, 程媛, 武昕. 基于Fisher有监督判别的非侵入式居民负荷辨识方法[J]. 电网技术, 2016, 40(8): 2484-2491. |
QI Bing, CHENG Yuan, WU Xin. Non-intrusive household appliance load identification method based on fisher supervised discriminant[J]. Power System Technology, 2016, 40(8): 2484-2491. | |
[11] | CHOU P A, CHANG R I. Unsupervised adaptive non-intrusive load monitoring system[C]//2013 IEEE International Conference on Systems, Man, and Cybernetics. Manchester, UK: IEEE, 2013: 3180-3185. |
[12] | 李如意, 王晓换, 胡美璇, 等. RPROP神经网络在非侵入式负荷分解中的应用[J]. 电力系统保护与控制, 2016, 44(7): 55-61. |
LI Ruyi, WANG Xiaohuan, HU Meixuan, et al. Application of RPROP neural network in nonintrusive load decomposition[J]. Power System Protection & Control, 2016, 44(7): 55-61. | |
[13] | BATRA N, KELLY J, PARSON O, et al. NILMTK: An open source toolkit for non-intrusive load monitoring[C]//Proceedings of the 5th international conference on Future energy systems. Cambridge, UK: ACM, 2014: 265-276. |
[14] | FIGUEIREDO M, DE ALMEIDA A, RIBEIRO B. Home electrical signal disaggregation for non-intrusive load monitoring (NILM) systems[J]. Neurocomputing, 2012, 96: 66-73. |
[15] | 涂京, 周明, 宋旭帆, 等. 基于监督学习的非侵入式负荷监测算法比较[J]. 电力自动化设备, 2018, 38(12): 128-134. |
TU Jing, ZHOU Ming, SONG Xufan, et al. Comparison of supervised learning-based non-intrusive load monitoring algorithms[J]. Electric Power Automation Equipment, 2018, 38(12): 128-134. | |
[16] | KARMAKAR P, TENG S W, LU G J. Thank you for attention: A survey on attention-based artificial neural networks for automatic speech recognition[DB/OL]. (2021-02-14)[2022-05-01]. https://arxiv.org/abs/2102.07259. |
[17] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: ACM, 2017: 6000-6010. |
[18] | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[DB/OL]. (2013-01-16)[2022-05-01]. https://arxiv.org/abs/1301.3781. |
[19] | KELLY J, KNOTTENBELT W. Neural NILM: Deep neural networks applied to energy disaggregation[C]//Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. Seoul, South Korea: ACM, 2015: 55-64. |
[20] | ZHANG C Y, ZHONG M J, WANG Z Z, et al. Sequence-to-point learning with neural networks for non-intrusive load monitoring[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, California, USA: AAAI, 2018: 2604-2611. |
[21] | PAN Y G, LIU K, SHEN Z Y, et al. Sequence-to-subsequence learning with conditional Gan for power disaggregation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona, Spain:IEEE, 2020: 3202-3206. |
[22] | YANG M Z, LIU Y E, LIU Q L. Nonintrusive residential electricity load decomposition based on transfer learning[J]. Sustainability, 2021, 13(12): 6546. |
[23] | KAZEMI S M, GOEL R, EGHBALI S, et al. Time2Vec: Learning a vector representation of time[DB/OL]. (2019-07-11)[2022-05-01]. https://arxiv.org/abs/1907.05321. |
[24] | 徐晓会, 赵书涛, 崔克彬. 基于卷积块注意力模型的非侵入式负荷分解算法[J]. 电网技术, 2021, 45(9): 3700-3706. |
XU Xiaohui, ZHAO Shutao, CUI Kebin. Non-intrusive load disaggregate algorithm based on convolutional block attention module[J]. Power System Technology, 2021, 45(9): 3700-3706. | |
[25] | KOLTER J Z, JOHNSON M J. REDD: A public data set for energy disaggregation research[EB/OL]. (2011-01-01)[2022-05-01]. https://people.csail.mit.edu/mattjj/papers/kddsust2011.pdf. |
[26] | KELLY J, KNOTTENBELT W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes[J]. Scientific Data, 2015, 2: 150007. |
[27] | GUO M H, LIU Z N, MU T J, et al. Beyond self-attention: External attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2023, 45(5): 5436-5447. |
[28] | GUO M H, CAI J X, LIU Z N, et al. PCT: Point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199. |
[29] | PRECHELT L. Early stopping-but when?[M]//Lecture Notes in Computer Science. Berlin, Germany: Springer Berlin Heidelberg, 1998: 55-69. |
[1] | BI Jinmao, ZHANG Peng, ZHANG Jie, ZHAO Chuncai, CUI Li. Polyester Melt Characteristic Viscosity Prediction Method Under Incomplete Data [J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 534-544. |
[2] | ZANG Hongyan, XIE Xiaolong, XU Yazhou, TAO Ye, GAO Changsheng. Hypersonic Maneuvering Target State Estimation Algorithm Based on Recurrent Neural Network [J]. Air & Space Defense, 2024, 7(4): 88-98. |
[3] | WANG Zhelan, ZHAO Hongjie, ZHAO Fan, SHEN Chenchen, WU Jiawei. Establishment of Remaining Life Prediction Model for an Inertial Navigation System Based on Convolutional Neural Network and Filtering Fusion Algorithm [J]. Air & Space Defense, 2023, 6(1): 70-77. |
[4] | YUAN Xiaoqi (袁筱祺), ZHU Lelan (朱乐兰), XU Qiongfan(徐琼凡), GAO Wei (高玮). Risk Prediction Model of Gallbladder Disease in Shanghai Middle-Aged and Elderly People Based on Neural Networks [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 153-159. |
[5] | ZHENG Dezhong, YANG Yuanyuan, XIE Zhe, NI Yangfan, LI Wentao. Data Splitting Method of Distance Metric Learning Based on Gaussian Mixed Model [J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 131-140. |
[6] | SHI Min, CAI Shaowei, YI Qingming. A Traffic Congestion Prediction Model Based on Dilated-Dense Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 124-130. |
[7] | ZHU Wenfeng1,WANG Jie1,XIA Guoyong2,LIN Peijian1. Optimization Method of Automotive Door Sealing System with Bar Structure Based on Neural Networks [J]. Journal of Shanghai Jiaotong University, 2014, 48(03): 377-381. |
[8] | LIU Guo-Quan-1, YANG Xian-Yi-1, CHAI Yi-1, FU Wei-1, FENG Wei-2, SHI Guang-1. Global Asymptotic Stability Criteria for Stochastic Neutral-Type Delayed Neural Networks [J]. Journal of Shanghai Jiaotong University, 2011, 45(08): 1151-1157. |
[9] | DUAN Xue-Hou, WANG Shi-Gang, XU Wei, TANG Cheng-Long. A Model to Predict Temper Rolling Force of Thin Gauge Strip with RBF Neural Networks [J]. Journal of Shanghai Jiaotong University, 2011, 45(06): 924-928. |
[10] |
DU Gang1,JIANG Zhibin1,DIAO Xiaodi2,YAO Yang3 . Analyzing Method for Clinical Pathway Variations Based on Fuzzy Neural Network with Knowledge [J]. Journal of Shanghai Jiaotong University, 2010, 44(11): 1600-1604. |
[11] |
DU Gang1,JIANG Zhibin1,DIAO Xiaodi2,YAO Yang3 . Variances Handling for Clinical Pathway Based on Takagi-Sugeno FNNs with Random Cooperative Decomposing PSO Optimization [J]. Journal of Shanghai Jiaotong University, 2010, 44(08): 1120-1124. |
[12] | JIN Hui-liang,YUAN De-hu,YE Qian,XIE Wen-hua. yo-yo Motion Control by Oscillatory Neural Networks [J]. Journal of Shanghai Jiaotong University, 2008, 42(12): 1939-1942. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||