Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (12): 1531-1542.doi: 10.16183/j.cnki.jsjtu.2022.180
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Next Articles
Received:
2022-05-24
Revised:
2022-07-19
Accepted:
2022-09-15
Online:
2023-12-28
Published:
2023-12-29
CLC Number:
PENG Xinghao, LI Yanting. Wind Power Scenario Generation Method and Application Based on Spatiotemporal Covariance Function[J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1531-1542.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.180
[1] | GWEC. GWEC global wind report 2022[EB/OL]. (2022-04-04)[2022-04-04]. https://gwec.net/global-wind-report-2022. |
[2] |
CHEN P Y, PEDERSEN T, BAK-JENSEN B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
doi: 10.1109/TPWRS.2009.2033277 URL |
[3] |
DÍAZ G, GÓMEZ-ALEIXANDRE J, COTO J. Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants[J]. Applied Energy, 2016, 162: 21-30.
doi: 10.1016/j.apenergy.2015.10.052 URL |
[4] | 董骁翀, 孙英云, 蒲天骄. 基于条件生成对抗网络的可再生能源日前场景生成方法[J]. 中国电机工程学报, 2020, 40(17): 5527-5536. |
DONG Xiaochong, SUN Yingyun, PU Tianjiao. Day-ahead scenario generation of renewable energy based on conditional GAN[J]. Proceedings of the CSEE, 2020, 40(17): 5527-5536. | |
[5] | 肖白, 于龙泽, 刘洪波, 等. 基于生成虚拟净负荷的多能源电力系统日前优化调度[J]. 中国电机工程学报, 2021, 41(21): 7237-7249. |
XIAO Bai, YU Longze, LIU Hongbo, et al. Day ahead optimal dispatch of multi-energy power system based on generating virtual net load[J]. Proceedings of the CSEE, 2021, 41(21): 7237-7249. | |
[6] | CHEN Y Z, WANG Y S, KIRSCHEN D, et al. Model-free renewable scenario generation using generative adversarial networks[C]// 2019 IEEE Power & Energy Society General Meeting. Atlanta, USA: IEEE, 2019: 1. |
[7] |
ZHANG Y F, AI Q, XIAO F, et al. Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network[J]. International Journal of Electrical Power & Energy Systems, 2020, 114: 105388.
doi: 10.1016/j.ijepes.2019.105388 URL |
[8] |
PINSON P, MADSEN H, NIELSEN H A, et al. From probabilistic forecasts to statistical scenarios of short-term wind power production[J]. Wind Energy, 2009, 12(1): 51-62.
doi: 10.1002/we.v12:1 URL |
[9] | 唐锦, 张书怡, 吴秋伟, 等. 基于Copula函数与等概率逆变换的风电出力场景生成方法[J]. 电力工程技术, 2021, 40(6): 86-94. |
TANG Jin, ZHANG Shuyi, WU Qiuwei, et al. Wind power output scenario generation method based on Copula function and equal probability inverse transformation[J]. Electric Power Engineering Technology, 2021, 40(6): 86-94. | |
[10] |
CAI D F, SHI D Y, CHEN J F. Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling[J]. IET Generation, Transmission & Distribution, 2013, 7(5): 474-482.
doi: 10.1049/gtd2.v7.5 URL |
[11] |
PAPAEFTHYMIOU G, KLOCKL B. MCMC for wind power simulation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 234-240.
doi: 10.1109/TEC.2007.914174 URL |
[12] | 赵鉴, 袁渤巽, 于浩, 等. 基于风光不确定性和相关性的场景生成[J]. 能源与节能, 2021(8): 8-12. |
ZHAO Jian, YUAN Boxun, YU Hao, et al. Scene generation based on uncertainty and correlation of wind and photovoltaic power[J]. Energy and Energy Conservation, 2021(8): 8-12. | |
[13] |
LI J H, ZHU D L. Combination of moment-matching, Cholesky and clustering methods to approximate discrete probability distribution of multiple wind farms[J]. IET Renewable Power Generation, 2016, 10(9): 1450-1458.
doi: 10.1049/rpg2.v10.9 URL |
[14] |
LI B H, SEDZRO K, FANG X, et al. A clustering-based scenario generation framework for power market simulation with wind integration[J]. Journal of Renewable and Sustainable Energy, 2020, 12(3): 036301.
doi: 10.1063/5.0006480 URL |
[15] |
WANG Z, WANG W S, LIU C, et al. Forecasted scenarios of regional wind farms based on regular vine copulas[J]. Journal of Modern Power Systems and Clean Energy, 2019, 8(1): 77-85.
doi: 10.35833/MPCE.2017.000570 URL |
[16] |
MA X Y, SUN Y Z, FANG H L. Scenario generation of wind power based on statistical uncertainty and variability[J]. IEEE Transactions on Sustainable Energy, 2013, 4(4): 894-904.
doi: 10.1109/TSTE.2013.2256807 URL |
[17] |
TAN J, WU Q W, ZHANG M L, et al. Wind power scenario generation with non-separable spatio-temporal covariance function and fluctuation-based clustering[J]. International Journal of Electrical Power & Energy Systems, 2021, 130: 106955.
doi: 10.1016/j.ijepes.2021.106955 URL |
[18] |
DENG J C, LI H R, HU J X, et al. A new wind speed scenario generation method based on spatiotemporal dependency structure[J]. Renewable Energy, 2021, 163: 1951-1962.
doi: 10.1016/j.renene.2020.10.132 URL |
[19] |
DRAXL C, CLIFTON A, HODGE B M, et al. The wind integration national dataset (WIND) toolkit[J]. Applied Energy, 2015, 151: 355-366.
doi: 10.1016/j.apenergy.2015.03.121 URL |
[20] |
GNEITING T. Nonseparable, stationary covariance functions for space-time data[J]. Journal of the American Statistical Association, 2002, 97(458): 590-600.
doi: 10.1198/016214502760047113 URL |
[21] | ABDI H. The Kendall rank correlation coefficient[C]// SALKIND N J. Encyclopedia of Measurement and Statistics. California, USA: Sage, 2006: 508-510. |
[22] | SKLAR A. Random variables, joint distribution functions, and copulas[J]. Kybernetika, 1973, 9(6): 449-460. |
[23] |
SAMPSON P D, GUTTORP P. Nonparametric estimation of nonstationary spatial covariance structure[J]. Journal of the American Statistical Association, 1992, 87(417): 108-119.
doi: 10.1080/01621459.1992.10475181 URL |
[24] | KRUSKAL J B, WISH M. Multidimensional scaling[M]. London: Sage, 1978. |
[25] |
VILLANUEVA D, FEIJÓO A. Wind power distributions: A review of their applications[J]. Renewable and Sustainable Energy Reviews, 2010, 14(5): 1490-1495.
doi: 10.1016/j.rser.2010.01.005 URL |
[26] |
HERSBACH H. Decomposition of the continuous ranked probability score for ensemble prediction systems[J]. Weather and Forecasting, 2000, 15(5): 559-570.
doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2 URL |
[27] |
SCHEUERER M, HAMILL T M. Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities[J]. Monthly Weather Review, 2015, 143(4): 1321-1334.
doi: 10.1175/MWR-D-14-00269.1 URL |
[28] |
HOLTTINEN H, TUOHY A, MILLIGAN M, et al. The flexibility workout: Managing variable resources and assessing the need for power system modification[J]. IEEE Power and Energy Magazine, 2013, 11(6): 53-62.
doi: 10.1109/MPE.2013.2278000 URL |
[29] | 江婷, 邓晖, 陆承宇, 等. 电能量和旋转备用市场下电-热综合能源系统低碳优化运行[J]. 上海交通大学学报, 2021, 55(12): 1650-1662. |
JIANG Ting, DENG Hui, LU Chengyu, et al. Low-carbon optimal operation of an integrated electricity-heat energy system in electric energy and spinning reserve market[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1650-1662. | |
[30] |
LIU F, BIE Z H, LIU S Y, et al. Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements[J]. Applied Energy, 2017, 188: 399-408.
doi: 10.1016/j.apenergy.2016.11.102 URL |
[31] |
NASROLAHPOUR E, KAZEMPOUR J, ZAREIPOUR H, et al. A bilevel model for participation of a storage system in energy and reserve markets[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 582-598.
doi: 10.1109/TSTE.2017.2749434 URL |
[32] |
ZHANG M L, AI X M, FANG J K, et al. A systematic approach for the joint dispatch of energy and reserve incorporating demand response[J]. Applied Energy, 2018, 230: 1279-1291.
doi: 10.1016/j.apenergy.2018.09.044 URL |
[1] | MI Yang, WU Jiwei, TIAN Shuxin, MA Siyuan, WANG Yufei. Fully Distributed Economic Dispatch of Combined Heat and Power System Considering Individual Selfishness [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 50-58. |
[2] | CHEN Yi, WANG Han, XU Xiaoyuan, HU Youlin, YAN Zheng, ZENG Dan, FENG Kai. A Two-Stage Distributionally Robust Economic Dispatch Model Under the Coordination of Inter-Provincial and Intra-Provincial Bi-Level Market [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1114-1125. |
[3] | PENG Sijia, XING Haijun, CHENG Mingyang. Low Carbon Economic Dispatch of Virtual Power Plants Considering Ladder-Type Carbon Trading in Multiple Uncertainties [J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1571-1582. |
[4] | GONG Weizheng, XU Ling, YAO Yin. Estimation of Wind Farm Available Inertia Considering Uncertainty of Wind Speed Distribution and Unit Inertia Transformation [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 51-59. |
[5] | LÜ Xiangmei, LIU Tianqi, LIU Xuan, HE Chuan, NAN Lu, ZENG Hong. Low-Carbon Economic Dispatch of Multi-Energy Park Considering High Proportion of Renewable Energy [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1586-1597. |
[6] | ZHOU Yuan (周源), WANG Haowei (王浩伟), Lü Weimin (吕卫民). Statistical Inference of Reliability with Multivariate Accelerated Degradation Data [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 237-245. |
[7] | SU Chun,ZHAO Jiabin. Optimal Design for Flexible Basic Warranty Policies Based on Usage Rate of Products [J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1182-1188. |
[8] | MA Yiwei (马艺玮), ZHOU Yanmei (周焰梅), ZHANG Jin'ai (张锦爱), PIAO Changhao (朴昌浩) . Economic Dispatch of Islanded Microgrid Considering a Cooperative Strategy Between Diesel Generator and Battery Energy Storage System [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 593-599. |
[9] | AN Zong-wen1* (安宗文), ZHANG Yu1 (张宇), WANG Zhong-lai2 (汪忠来). Reliability Copula Model for Wind Turbine Gearbox Based on Failure Correlation [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 312-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||