Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (4): 379-392.doi: 10.16183/j.cnki.jsjtu.2021.492
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Next Articles
Received:
2021-12-07
Revised:
2022-01-06
Accepted:
2022-03-21
Online:
2023-04-28
Published:
2023-05-05
CLC Number:
CHU Xu, BAO Zehong. Overview of Protection Principle of Power Grid in Integrated Energy System[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 379-392.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.492
[1] | 杨海柱, 李梦龙, 江昭阳, 等. 考虑需求侧电热气负荷响应的区域综合能源系统优化运行[J]. 电力系统保护与控制, 2020, 48(10): 30-37. |
YANG Haizhu, LI Menglong, JIANG Zhaoyang, et al. Optimal operation of regional integrated energy system considering demand side electricity heat and natural-gas loads response[J]. Power System Protection and Control, 2020, 48(10): 30-37. | |
[2] | 刘海金, 李斌, 温伟杰, 等. 柔性直流系统的线路保护关键技术与展望[J]. 电网技术, 2021, 45(9): 3463-3477. |
LIU Haijin, LI Bin, WEN Weijie, et al. Review and prospect on transmission line protection in flexible DC system[J]. Power System Technology, 2021, 45(9): 3463-3477. | |
[3] | 丁涛, 牟晨璐, 别朝红, 等. 能源互联网及其优化运行研究现状综述[J]. 中国电机工程学报, 2018, 38(15): 4318-4328. |
DING Tao, MU Chenlu, BIE Zhaohong, et al. Review of energy internet and its operation[J]. Proceedings of the CSEE, 2018, 38(15): 4318-4328. | |
[4] | 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. |
YU Xiaodan, XU Xiandong, CHEN Shuoyi, et al. A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. | |
[5] | 程浩忠, 胡枭, 王莉, 等. 区域综合能源系统规划研究综述[J]. 电力系统自动化, 2019, 43(7): 2-13. |
CHEN Haozhong, HU Xiao, WANG Li, et al. Review on research of regional integrated energy system planning[J]. Automation of Electric Power Systems, 2019, 43(7): 2-13. | |
[6] | 刘文霞, 李征洲, 杨粤, 等. 计及需求响应不确定性的综合能源系统协同优化配置[J]. 电力系统自动化, 2020, 44(10): 41-53. |
LIU Wenxia, LI Zhengzhou, YANG Yue, et al. Collaborative optimal configuration for integrated energy system considering uncertainties demand response[J]. Automation of Electric Power Systems, 2020, 44(10): 41-53. | |
[7] | 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207. |
JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7): 198-207. | |
[8] |
HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: The energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148.
doi: 10.1109/JPROC.2010.2081330 URL |
[9] | 王喜文, 王叶子. 德国信息化能源(E-Energy)促进计划[J]. 电力需求侧管理, 2011, 13(4): 75-76. |
WANG Xiwen, WANG Yezi. Introduction of German smart grid “E-Energy” project promotion[J]. Power Demand Side Management, 2011, 13(4): 75-76. | |
[10] |
KAKIGANO H, MIURA Y, ISE T. Low-voltage bipolar-type DC microgrid for super high quality distribution[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 3066-3075.
doi: 10.1109/TPEL.2010.2077682 URL |
[11] | 王伟亮, 王丹, 贾宏杰, 等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报, 2016, 36(12): 3292-3306. |
WANG Weiliang, WANG Dan, JIA Hongjie, et al. Review of steady-state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE, 2016, 36(12): 3292-3306. | |
[12] | 曾鸣, 刘英新, 周鹏程, 等. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42(6): 1697-1708. |
ZENG Ming, LIU Yingxin, ZHOU Pengcheng, et al. Review and prospects of integrated energy system modeling and benefit evaluation[J]. Power System Technology, 2018, 42(6): 1697-1708. | |
[13] | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24. |
YANG Jingwei, ZHANG Ning, WANG Yi, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24. | |
[14] | 原凯, 李敬如, 宋毅, 等. 区域能源互联网综合评价技术综述与展望[J]. 电力系统自动化, 2019, 43(14): 41-52. |
YUAN Kai, LI Jingru, SONG Yi, et al. Review and prospect of comprehensive evaluation technology of regional energy internet[J]. Automation of Electric Power Systems, 2019, 43(14): 41-52. | |
[15] | 刘涤尘, 彭思成, 廖清芬, 等. 面向能源互联网的未来综合配电系统形态展望[J]. 电网技术, 2015, 39(11): 3023-3034. |
LIU Dichen, PENG Sicheng, LIAO Qingfen, et al. Outlook of future integrated distribution system morphology orienting to energy internet[J]. Power System Technology, 2015, 39(11): 3023-3034. | |
[16] | 孙利, 陈武, 蒋晓剑, 等. 能源互联网框架下多端口能量路由器的多工况协调控制[J]. 电力系统自动化, 2020, 44(3): 32-45. |
SUN Li, CHEN Wu, JIANG Xiaojian, et al. Coordinated control of multiple operation for multi-port energy router in energy internet framework[J]. Automation of Electric Power Systems, 2020, 44(3): 32-45. | |
[17] | 年珩, 程鹏, 贺益康. 故障电网下双馈风电系统运行技术研究综述[J]. 中国电机工程学报, 2015, 35(16): 4184-4197. |
NIAN Heng, CHENG Peng, HE Yikang. Review on operation techniques for DFIG-based wind energy conversion systems under network faults[J]. Proceedings of the CSEE, 2015, 35(16): 4184-4197. | |
[18] | 张长久, 邬小波, 谢小英. 基于GB/T 33593标准的DG低电压穿越输出特性研究[J]. 电力系统保护与控制, 2019, 47(24): 76-83. |
ZHANG Hengjiu, WU Xiaobo, XIE Xiaoying. Research on low voltage ride through of DG characteristics based on GB/T 33593 standard[J]. Power System Protection and Control, 2019, 47(24): 76-83. | |
[19] | 鲁月华, 樊艳芳, 罗瑞. 适用于交直流混联系统的时域全量故障模型判别纵联保护方案[J]. 电力系统保护与控制, 2020, 48(19): 81-88. |
LU Yuehua, FAN Yanfang, LUO Rui. Principle of active distribution network pilot protection based on time domain model identification[J]. Power System Protection and Control, 2020, 48(19): 81-88. | |
[20] |
PAN Y, MEI F, ZHOU C, et al. Analysis on integrated energy system cascading failures considering interaction of coupled heating and power networks[J]. IEEE Access, 2019, 7: 89752-89765.
doi: 10.1109/Access.6287639 URL |
[21] | 何正友, 李波, 廖凯, 等. 新形态城市电网保护与控制关键技术[J]. 中国电机工程学报, 2020, 40(19): 6193-6207. |
HE Zhengyou, LI Bo, LIAO Kai, et al. Key technologies for protection and control of novel urban power grids[J]. Proceedings of the CSEE, 2020, 40(19): 6193-6207. | |
[22] | 张保会, 王进, 郝治国, 等. 风电接入对继电保护的影响(三)——风电场送出变压器保护性能分析[J]. 电力自动化设备, 2013, 33(3): 1-8. |
ZHANG Baohui, WANG Jin, HAO Zhiguo, et al. Impact of wind farm integration on relay protection (3): Performance analysis for wind farm outgoing transformer protection[J]. Electric Power Automation Equipment, 2013, 33(3): 1-8. | |
[23] | 李松林, 欧阳金鑫. 计及双馈机组影响的同步发电机短路电流特征研究[J]. 电网与清洁能源, 2017, 33(2): 124-129. |
LI Songlin, OUYANG Jinxin. Research on characteristics of short-circuit current of synchronous generator considering doubly-fed induction generator[J]. Power System and Clean Energy, 2017, 33(2): 124-129. | |
[24] | 韩海娟, 牟龙华, 郭文明. 基于故障分量的微电网保护适用性[J]. 电力系统自动化, 2016, 40(3): 90-96. |
HAN Haijuan, MU Longhua, GUO Wenming. Adaptability of microgrid protection based on fault components[J]. Automation of Electric Power Systems, 2016, 40(3): 90-96. | |
[25] | 李彦宾, 贾科, 毕天姝, 等. 电流差动保护在逆变型新能源场站送出线路中的适应性分析[J]. 电力系统自动化, 2017, 41(12): 100-105. |
LI Yanbin, JIA Ke, BI Tianshu, et al. Adaptability analysis of current differential protection of outgoing transmission line emanating from inverter-interfaced renewable energy power plants[J]. Automation of Electric Power Systems, 2017, 41(12): 100-105. | |
[26] | 刘其辉, 葛立坤, 郭晓芸. 适应多类型电网故障的储能系统预测电流控制与LVRT策略[J]. 电力系统保护与控制, 2014, 42(10): 96-103. |
LIU Qihui, GE Likun, GUO Xiaoyun. A low voltage ride through technology adapting to multi-grid fault of battery energy storage system[J]. Power System Protection and Control, 2014, 42(10): 96-103. | |
[27] | 王守相, 刘琪, 薛士敏, 等. 直流配电系统控制与保护协同关键技术及展望[J]. 电力系统自动化, 2019, 43(23): 23-30. |
WANG Shouxiang, LIU Qi, XUE Shimin, et al. Key technologies and prospect for coordinated control and protection in DC distribution system[J]. Automation of Electric Power Systems, 2019, 43(23): 23-30. | |
[28] | 徐可寒, 张哲, 刘慧媛, 等. 光伏电源故障特性研究及影响因素分析[J]. 电工技术学报, 2020, 35(2): 359-371. |
XU Kehan, ZHANG Zhe, LIU Huiyuan, et al. Study on fault characteristics and its related impact factors of photovoltaic generator[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 359-371. | |
[29] |
MA J, ZHANG W, LIU J, et al. A novel adaptive distance protection scheme for DFIG wind farm collector lines[J]. International Journal of Electrical Power & Energy Systems, 2018, 94: 234-244.
doi: 10.1016/j.ijepes.2017.07.008 URL |
[30] |
CHEN S, TAI N, FAN C, et al. Adaptive distance protection for grounded fault of lines connected with doubly-fed induction generators[J]. IET Generation, Transmission & Distribution, 2017, 11(6): 1513-1520.
doi: 10.1049/gtd2.v11.6 URL |
[31] | 文明浩, 陈德树, 尹项根. 超高压线路等传变快速距离保护[J]. 中国电机工程学报, 2012, 32(4): 145-150. |
WEN Minghao, CHEN Deshu, YI Shuogen. Fast distance protection of EHV transmission lines based on equal transfer processes[J]. Proceedings of the CSEE, 2012, 32(4): 145-150. | |
[32] | 戚宣威, 叶雨田, 王松, 等. 基于异构边界的串补输电线路单端量全线速动保护新原理[J]. 电力系统自动化, 2019, 43(23): 1-8. |
QI Xuanwei, YE Yutian, WANG Song, et al. A novel fast and full-line for series compensated transmission lines based on heterogeneous boundary[J]. Automation of Electric Power Systems, 2019, 43(23): 1-8. | |
[33] |
WEI F, LIN X, LI Z, et al. A new distance protection method considering TCSC-FCL dynamic impedance characteristics[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1428-1437.
doi: 10.1109/TPWRD.61 URL |
[34] |
KONG X. A three-zone distance protection scheme capable to cope with the impact of UPFC[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 949-959.
doi: 10.1109/TPWRD.61 URL |
[35] | 曹亚倩, 郑晓冬, 丛新棚, 等. 基于虚拟能量调节偏差的MMC-HVDC输电线路保护方案[J]. 电力系统自动化, 2020, 44(23): 109-116. |
CAO Yaqian, ZHENG Xiaodong, CONG Xinpeng, et al. Protection scheme for MMC-HVDC transmission line based on virtual energy regulation deviation[J]. Automation of Electric Power Systems, 2020, 44(23): 109-116. | |
[36] | 朱妍, 陆于平, 黄涛. 计及谐波频率特征的含风电配电网充分式电流幅值差动保护[J]. 电力系统自动化, 2020, 44(16): 130-136. |
ZHU Yan, LU Yuping, HUANG Tao. Sufficient current amplitude differential protection considering frequency characteristic of harmonics for distribution network with wind power[J]. Automation of Electric Power Systems, 2020, 44(16): 130-136. | |
[37] | 吕哲, 王增平. 基于暂态电流波形特征的快速差动保护新原理[J]. 中国电机工程学报, 2020, 40(5): 1534-1545. |
LYU Zhe, WANG Zengping. A transient current waveform feature based novel high-speed differential protection[J]. Proceedings of the CSEE, 2020, 40(5): 1534-1545. | |
[38] |
GAO H, LI J, XUN B. Principle and implementation of current differential protection in distribution networks with high penetration of DGs[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 565-574.
doi: 10.1109/TPWRD.2016.2628777 URL |
[39] | 毕天姝, 李彦宾, 贾科, 等. 基于暂态电流波形相关性的新能源场站送出线路纵联保护[J]. 中国电机工程学报, 2018, 38(7): 2012-2019. |
BI Tianshu, LI Yanbin, JIA Ke, et al. Transient current waveform similarity based pilot protection for transmission lines connected to renewable energy power plants[J]. Proceedings of the CSEE, 2018, 38(7): 2012-2019. | |
[40] | 贾科, 杨哲, 魏超, 等. 基于斯皮尔曼等级相关系数的新能源送出线路纵联保护[J]. 电力系统自动化, 2020, 44(15): 103-115. |
JIA Ke, YANG Zhe, WEI Chao, et al. Pilot protection based on Spearman rank correlation coefficient for transmission line connected to renewable energy source[J]. Automation of Electric Power Systems, 2020, 44(15): 103-115. | |
[41] | 郑黎明, 贾科, 毕天姝, 等. 基于余弦相似度的新能源场站T接型送出线路纵联保护[J]. 电力系统自动化, 2019, 43(18): 111-124. |
ZHENG Liming, JIA Ke, BI Tianshu, et al. Cosine similarity based pilot protection of teed transmission line connected to renewable energy power plants[J]. Automation of Electric Power Systems, 2019, 43(18): 111-124. | |
[42] |
CHEN L, LIN X, LI Z, et al. Similarity comparison based high-speed pilot protection for transmission line[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 938-948.
doi: 10.1109/TPWRD.61 URL |
[43] |
JIN N, LIN X, RONG Z, et al. Phase-space-based pilot main protection for a transmission line immune to timing attack and controllable shunt reactors[J]. IEEE Transactions on Power Delivery, 2020, 35(2): 654-664.
doi: 10.1109/TPWRD.61 URL |
[44] | 宁连营, 邰能灵, 郑晓冬, 等. 基于自定义差分电流的MMC-HVDC输电线路纵联保护[J]. 电力系统自动化, 2017, 41(17): 87-93. |
NING Lianying, TAI Nengling, ZHENG Xiaodong, et al. Pilot protection for MMC-HVDC transmission line based on custom difference current[J]. Automation of Electric Power Systems, 2017, 41(17): 87-93. | |
[45] | 郑涛, 吴琼, 吕文轩, 等. 基于主动限流控制的直流配电网保护及故障隔离方案[J]. 电力系统自动化, 2020, 44(5): 114-121. |
ZHENG Tao, WU Qiong, LYU Wenxuan, et al. Protection and fault isolation scheme based on active current-limiting control for DC distribution network[J]. Automation of Electric Power Systems, 2020, 44(5): 114-121. | |
[46] | 薛士敏, 刘存甲, 李蒸, 等. 基于控保协同的环形直流微网单端测距保护技术[J]. 电力系统自动化, 2020, 44(5): 122-129. |
XUE Shimin, LIU Cunjia, LI Zheng, et al. Single-end ranging protection technology for ring DC microgrid based on coordinated control and protection[J]. Automation of Electric Power Systems, 2020, 44(5): 122-129. | |
[47] |
JIA K, CHEN J, XUAN Z, et al. Active protection for photovoltaic DC-boosting integration system during FRT[J]. IET Generation, Transmission & Distribution, 2019, 13(18): 4081-4088.
doi: 10.1049/gtd2.v13.18 URL |
[48] |
XUE S, LIU C. Fault location principle and 2-step isolation scheme for a loop-type DC grid[J]. IET Generation, Transmission & Distribution, 2018, 12(12): 2937-2943.
doi: 10.1049/gtd2.v12.12 URL |
[49] | 王聪博, 贾科, 毕天姝, 等. 基于控保协同的多端柔性直流配电系统线路保护[J]. 中国电机工程学报, 2020, 40(8): 2559-2568. |
WANG Congbo, JIA Ke, BI Tianshu, et al. Line protection method for multi-terminal flexible DC distribution system based on control and protection coordination[J]. Proceedings of the CSEE, 2020, 40(8): 2559-2568. | |
[50] | ZHU R, JIA K, BI T, et al. Active control-based protection for a flexible DC system of a PV power plant[J]. International Journal of Electrical Power & Energy Systems, 2020, 114: 1-10. |
[51] | 宋国兵, 侯俊杰, 郭冰. 基于主动探测式的柔性直流电网纵联保护[J]. 电网技术, 2020, 44(10): 4001-4010. |
SONG Guobing, HOU Junjie, GUO Bing. Pilot protection of flexible DC grid based on active detection[J]. Power System Technology, 2020, 44(10): 4001-4010. | |
[52] |
LIU W, LIU F, ZHA X, et al. An improved SSCB combining fault interruption and fault location functions for DC line short-circuit fault protection[J]. IEEE Transactions on Power Delivery, 2019, 34(3): 858-868.
doi: 10.1109/TPWRD.61 URL |
[53] | 解超, 李凤婷, 王彦鹏, 等. 基于高频信号的输电线路主动式保护[J]. 电力系统保护与控制, 2017, 45(7): 6-12. |
XIE Chao, LI Fengting, WANG Yanpeng, et al. An active protection of transmission line based on high-frequency signal[J]. Power System Protection and Control, 2017, 45(7): 6-12. | |
[54] | 宋国兵, 王婷, 张晨浩, 等. 利用健全极MMC注入特征信号的直流线路故障性质判别方法[J]. 电工技术学报, 2019, 34(5): 994-1003. |
SONG Guobing, WANG Ting, ZHANG Chenhao, et al. DC line fault identification based on characteristic signal injection using the MMC of sound pole[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 994-1003. | |
[55] | 王帅, 毕天姝, 贾科. 基于主动脉冲的MMC-HVDC单极接地故障测距[J]. 电工技术学报, 2017, 32(1): 12-19. |
WANG Shuai, BI Tianshu, JIA Ke. Single terminal fault location for MMC-HVDC transmission line using active pulse[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 12-19. | |
[56] | 曾德辉, 王钢, 郭敬梅, 等. 含逆变型分布式电源配电网自适应电流速断保护方案[J]. 电力系统自动化, 2017, 41(12): 86-92. |
ZENG Dehui, WANG Gang, GUO Jingmei, et al. Adaptive current protection scheme for distribution network with inverter-interfaced distributed generators[J]. Automation of Electric Power Systems, 2017, 41(12): 86-92. | |
[57] | 陈实, 邰能灵, 范春菊, 等. 考虑风力发电的配电网弱馈线路自适应电流保护[J]. 电工技术学报, 2017, 32(3): 65-73. |
CHEN Shi, TAI Nengling, FAN Chunju, et al. An adaptive current protection for weak-infeed distribution lines with wind generation[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 65-73. | |
[58] |
MA J, LIU J, DENG Z, et al. An adaptive directional current protection scheme for distribution network with DG integration based on fault steady-state component[J]. International Journal of Electrical Power & Energy Systems, 2018, 102: 223-234.
doi: 10.1016/j.ijepes.2018.04.024 URL |
[59] | 薛永端, 汪洋, 徐丙垠. 小电阻接地系统高灵敏度阶段式零序过电流保护[J]. 中国电机工程学报, 2020, 40(19): 6217-6227. |
XUE Yongduan, WANG Yang, XU Bingyin. High sensitive zero-sequence stage current protection for low-resistance grounding system[J]. Proceedings of the CSEE, 2020, 40(19): 6217-6227. | |
[60] | 汪光远, 马啸, 林湘宁, 等. 基于集成学习的柔性直流配电线路单端量高灵敏保护方案[J]. 中国电机工程学报, 2021, 41(24): 8447-8463. |
WANG Guangyuan, MA Xiao, LIN Xiangning, et al. Single-ended high-sensitivity protection scheme for flexible DC distribution line based on ensemble learning[J]. Proceedings of the CSEE, 2021, 41(24): 8447-8463. | |
[61] | 杨赛昭, 向往, 张峻榤, 等. 基于人工神经网络的架空柔性直流电网故障检测方法[J]. 中国电机工程学报, 2019, 39(15): 4416-4430. |
YANG Saizhao, XIANG Wang, ZHANG Junjie, et al. The artificial neural network based fault detection method for the overhead MMC based DC grid[J]. Proceedings of the CSEE, 2019, 39(15): 4416-4430. | |
[62] |
YU J, HOU Y, LAM A, et al. Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1694-1703.
doi: 10.1109/TSG.5165411 URL |
[63] | 邓丰, 李欣然, 曾祥君. 基于波形唯一和时-频特征匹配的单端行波保护和故障定位方法[J]. 中国电机工程学报, 2018, 38(5): 1475-1487. |
DENG Feng, LI Xinran, ZENG Xiangjun. Research on single-end traveling wave based protection and fault location method based on waveform uniqueness and feature matching in the time and frequency domain[J]. Proceedings of the CSEE, 2018, 38(5): 1475-1487. | |
[64] |
ZHANG C, SONG G, WANG T. An improved non-unit traveling wave protection method with adaptive threshold value and its application in HVDC grids[J]. IEEE Transactions on Power Delivery, 2020, 35(4): 1800-1811.
doi: 10.1109/TPWRD.61 URL |
[65] | 宋国兵, 张晨浩, 杨黎明, 等. 利用波前信息的直流输电线路超高速保护原理[J]. 电网技术, 2019, 43(2): 576-581. |
SONG Guobing, ZHANG Chenhao, YANG Liming, et al. Principle of ultra-high-speed protection for DC transmission line using wave front information[J]. Power System Technology, 2019, 43(2): 576-581. | |
[66] | 张晨浩, 宋国兵, 董新洲, 等. 利用波前广义Logistic函数拟合的直流输电线路快速保护原理[J]. 中国电机工程学报, 2019, 39(11): 3168-3176. |
ZHANG Chenhao, SONG Guobing, DONG Xinzhou, et al. Principle of high speed protection for DC transmission line using wave front generalized Logistic function fitting[J]. Proceedings of the CSEE, 2019, 39(11): 3168-3176. | |
[67] | 张晨浩, 宋国兵, 董新洲. 利用故障电流首行波拟合的柔性直流输电线路单端行波保护原理[J]. 中国电机工程学报, 2021, 41(8): 2651-2661. |
ZHANG Chenhao, SONG Guobing, DONG Xinzhou. Principle of non-unit traveling wave protection for VSC-HVDC transmission line using fault current initial traveling wave fitting[J]. Proceedings of the CSEE, 2021, 41(8): 2651-2661. | |
[68] |
LI B, LV M, LI B, et al. Research on an improved protection principle based on differential voltage traveling wave for VSC-HVDC transmission lines[J]. IEEE Transactions on Power Delivery. 2020, 35(5): 2319-2329.
doi: 10.1109/TPWRD.61 URL |
[69] |
TANG L, DONG X, LUO S, et al. A new differential protection of transmission line based on equivalent travelling wave[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1359-1369.
doi: 10.1109/TPWRD.2016.2568206 URL |
[70] | 吴浩, 李群湛, 刘炜. 输电线路功率型行波纵联保护新方法[J]. 电力系统自动化, 2016, 40(2): 107-113. |
WU Hao, LI Qunzhan, LIU Wei. A new pilot protection algorithm based on traveling wave power for transmission lines[J]. Automation of Electric Power Systems, 2016, 40(2): 107-113. | |
[71] |
COSTA F B, MONTI A, LOPES F V, et al. Two-terminal traveling wave based transmission line protection[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1382-1393.
doi: 10.1109/TPWRD.2016.2574900 URL |
[72] |
NAMDARI F, SALEHI M. High-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 246-253.
doi: 10.1109/TPWRD.2016.2571341 URL |
[73] | 张帆, 潘贞存, 马琳琳, 等. 基于模量行波传输时间差的线路接地故障测距与保护[J]. 中国电机工程学报, 2009, 29(10): 78-83. |
ZHANG Fan, PAN Zhencun, MA Linlin, et al. Transmission line fault location and protection based on the gap between zero mode and aerial mode traveling wave propagation time[J]. Proceedings of the CSEE, 2009, 29(10): 78-83. | |
[74] |
JAFARIAN P, SANAYE P M. High-frequency transients-based protection of multiterminal transmission lines using the SVM technique[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 188-196.
doi: 10.1109/TPWRD.2012.2215925 URL |
[75] |
MA Y, LI H, WANG G. Fault analysis and traveling-wave-based protection scheme for double-circuit LCC-HVDC transmission lines with shared towers[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1479-1488.
doi: 10.1109/TPWRD.61 URL |
[76] |
KONG F, HAO Z, ZHANG B. A novel traveling-wave-based main protection scheme for 800 kV UHVDC bipolar transmission lines[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2159-2168.
doi: 10.1109/TPWRD.61 URL |
[77] | 谢仲润, 邹贵彬, 杜肖功, 等. 基于真双极的MTDC电网直流线路快速保护[J]. 中国电机工程学报, 2020, 40(6): 1906-1915. |
XIE Zhongrun, ZOU Guibin, DU Xiaogong, et al. Fast DC lines protection for symmetrical bipolar based MTDC grid[J]. Proceedings of the CSEE, 2020, 40(6): 1906-1915. | |
[78] | 李斌, 何佳伟, 李晔, 等. 基于边界特性的多端柔性直流配电系统单端量保护方案[J]. 中国电机工程学报, 2016, 36(21): 5741-5749. |
LI Bin, HE Jiawei, LI Ye, et al. Single-ended protection scheme based on boundary characteristic for the multi-terminal VSC-based DC distribution system[J]. Proceedings of the CSEE, 2016, 36(21): 5741-5749. | |
[79] | 何佳伟, 李斌, 李晔, 等. 多端柔性直流电网快速方向纵联保护方案[J]. 中国电机工程学报, 2017, 37(23): 6878-6887. |
HE Jiawei, LI Bin, LI Ye, et al. A fast directional pilot protection scheme for the MMC-based MTDC grid[J]. Proceedings of the CSEE, 2017, 37(23): 6878-6887. | |
[80] |
HUANG Q, ZHOU G, ZHANG S, et al. A pilot protection scheme of DC lines for multi-terminal HVDC grid[J]. IEEE Transactions on Power Delivery, 2019, 34(5): 1957-1966.
doi: 10.1109/TPWRD.61 URL |
[81] | 宋国兵, 褚旭, 高淑萍. 利用滤波器支路电流的高压直流输电线路全线速动保护[J]. 中国电机工程学报, 2013, 33(22): 120-126. |
SONG Guobing, CHU Xu, GAO Shuping. A whole-line quick-action protection principle for HVDC transmission lines using one-end current of DC-filters[J]. Proceedings of the CSEE, 2013, 33(22): 120-126. | |
[82] | 杨亚宇, 邰能灵, 范春菊, 等. 利用峰值频率的高压直流输电线路纵联保护方案[J]. 中国电机工程学报, 2017, 37(15): 4304-4314. |
YANG Yayu, TAI Nengling, FAN Chunju, et al. A pilot protection scheme for HVDC transmission lines based on specific-frequency[J]. Proceedings of the CSEE, 2017, 37(15): 4304-4314. | |
[83] |
DAI Z, LIU N, ZHANG C, et al. A pilot protection for HVDC transmission lines based on transient energy ratio of DC filter link[J]. IEEE Transactions on Power Delivery, 2020, 35(4): 1695-1706.
doi: 10.1109/TPWRD.61 URL |
[84] | 侯俊杰, 宋国兵, 常仲学. 基于暂态功率的高压直流线路单端量保护[J]. 电力系统自动化, 2019, 43(21): 203-216. |
HOU Junjie, SONG Guobing, CHANG Zhongxue. Transient power based single-end protection for HVDC transmission line[J]. Automation of Electric Power Systems, 2019, 43(21): 203-216. | |
[85] | 林圣, 牟大林, 刘磊, 等. 基于特征谐波阻抗比值的HVDC直流滤波器高压电容器接地故障保护方案[J]. 中国电机工程学报, 2019, 39(22): 6617-6627. |
LIN Sheng, MU Dalin, LIU Lei, et al. Research on ground fault protection for high voltage capacitor of DC filter in HVDC based on characteristic harmonic impedance ratio[J]. Proceedings of the CSEE, 2019, 39(22): 6617-6627. | |
[86] | 李慧, 罗奇, 张柏林, 等. 直流电抗器对VSC-MTDC输电系统稳定性的影响分析[J]. 电网技术, 2019, 43(7): 2641-2650. |
LI Hui, LUO Qi, ZHANG Bolin, et al. Impact of DC reactors on stability of VSC-MTDC transmission system[J]. Power System Technology, 2019, 43(7): 2641-2650. |
[1] | ZHANG Chunyan, DOU Zhenlan, BAI Bingqing, WANG Lingling, JIANG Chuanwen, XIONG Zhan. Low-Carbon Operation Strategy of Integrated Energy System Based on User Classification [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 1-10. |
[2] | WANG Jing, XING Haijun, WANG Huaxin, PENG Sijia. Optimal Scheduling of Integrated Energy System Considering Integration of Electric Vehicles and Load Aggregators [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 814-823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||