[1] |
马良, 徐晓兰, 丁汉, 等. 2019年中国机器人产业发展报告[R]. 北京: 中国电子学会, 2019.
|
|
MA Liang, XU Xiaolan, DING Han, et al. China robot industry development report 2019[R]. Beijing: China Electronics Association, 2019.
|
[2] |
EWERTON M, MAEDA G, KOLLEGGER G, et al. Incremental imitation learning of context-dependent motor skills[C]// 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). Cancun, Mexico: IEEE, 2016: 351-358.
|
[3] |
BROCK O, KHATIB O. Elastic strips: A framework for integrated planning and execution[C]// Experimental Robotics VI. London: Springer, 2000: 329-338.
|
[4] |
ZHANG H W, LENG Y Q. Motor skills learning and generalization with adapted curvilinear Gaussian mixture model[J]. Journal of Intelligent & Robotic Systems, 2019, 96(3/4): 457-475.
|
[5] |
CHANG G T, KULIĆ D. Motion learning from observation using affinity propagation clustering[C]// 2013 IEEE RO-MAN. Gyeongju, Korea (South): IEEE, 2013: 662-667.
|
[6] |
IJSPEERT A J, NAKANISHI J, HOFFMANN H, et al. Dynamical movement primitives: Learning attractor models for motor behaviors[J]. Neural Computation, 2013, 25(2): 328-373.
doi: 10.1162/NECO_a_00393
pmid: 23148415
|
[7] |
MEIER F, SCHAAL S. A probabilistic representation for dynamic movement primitives[EB/OL]. (2016-12-18) [2021-06-05]. https://arxiv.org/abs/1612.05932.
|
[8] |
GAŠPAR T, NEMEC B, MORIMOTO J, et al. Skill learning and action recognition by arc-length dynamic movement primitives[J]. Robotics & Autonomous Systems, 2018, 100: 225-235.
|
[9] |
LI J J, LI Z J, LI X D, et al. Skill learning strategy based on dynamic motion primitives for human-robot cooperative manipulation[J]. IEEE Transactions on Cognitive & Developmental Systems, 2021, 13(1): 105-117.
|
[10] |
YANG C G, JIANG Y M, LI Z J, et al. Neural control of bimanual robots with guaranteed global stability and motion precision[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1162-1171.
doi: 10.1109/TII.2016.2612646
URL
|
[11] |
BECKERS T, UMLAUFT J, HIRCHE S. Stable model-based control with Gaussian process regression for robot manipulators[J]. IFAC-PapersOnLine, 2017, 50(1): 3877-3884.
doi: 10.1016/j.ifacol.2017.08.359
URL
|
[12] |
YANG C G, JIANG Y M, NA J, et al. Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(3): 574-588.
doi: 10.1109/TFUZZ.91
URL
|
[13] |
ZHANG S, DONG Y T, OUYANG Y C, et al. Adaptive neural control for robotic manipulators with output constraints and uncertainties[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(11): 5554-5564.
|
[14] |
ZHANG Y Y, CHEN S Y, LI S, et al. Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4909-4920.
doi: 10.1109/TIE.41
URL
|
[15] |
XU Z H, LI S, ZHOU X F, et al. Dynamic neural networks based kinematic control for redundant manipulators with model uncertainties[J]. Neurocomputing, 2019, 329: 255-266.
doi: 10.1016/j.neucom.2018.11.001
URL
|
[16] |
MAO Z Y, ZHAO F L. Structure optimization of a vibration suppression device for underwater moored platforms using CFD and neural network[J]. Complexity, 2017, 2017: 5392539.
|
[17] |
YIN X C, CHEN Q J. Learning nonlinear dynamical system for movement primitives[C]// 2014 IEEE International Conference on Systems, Man, and Cybernetics. San Diego, USA: IEEE, 2014: 3761-3766.
|
[18] |
YANG C G, CHEN C Z, HE W, et al. Robot learning system based on adaptive neural control and dynamic movement primitives[J]. IEEE Transactions on Neural Networks & Learning Systems, 2019, 30(3): 777-787.
|
[19] |
YANG C G, WANG X Y, CHENG L, et al. Neural-learning-based telerobot control with guaranteed performance[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3148-3159.
doi: 10.1109/TCYB.2016.2573837
pmid: 28113610
|
[20] |
YANG C G, WANG X J, LI Z J, et al. Teleoperation control based on combination of wave variable and neural networks[J]. IEEE Transactions on Systems, Man, & Cybernetics: Systems, 2017, 47(8): 2125-2136.
|
[21] |
GHORBEL F, SRINIVASAN B, SPONG M. On the positive definiteness and uniform boundedness of the inertia matrix of robot manipulators[C]// Proceedings of 32nd IEEE Conference on Decision and Control. San Antonio, USA: IEEE, 1993: 1103-1108.
|