[1] |
HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1997, 135(2): 260-278.
doi: 10.1006/jcph.1997.5713
URL
|
[2] |
LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics, 1996, 129(2): 364-382.
doi: 10.1006/jcph.1996.0256
URL
|
[3] |
HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III[J]. Journal of Computational Physics, 1987, 71(1): 231-303.
doi: 10.1016/0021-9991(87)90031-3
URL
|
[4] |
SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1989, 77(2): 439-471.
doi: 10.1016/0021-9991(88)90177-5
URL
|
[5] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
doi: 10.1006/jcph.1996.0130
URL
|
[6] |
DENG X, ZHANG H. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.
doi: 10.1006/jcph.2000.6594
URL
|
[7] |
FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374: 724-751.
doi: 10.1016/j.jcp.2018.07.043
URL
|
[8] |
YE C C, WAN Z H, SUN D J. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws[J]. Computers & Fluids, 2022, 238: 105368.
doi: 10.1016/j.compfluid.2022.105368
URL
|
[9] |
BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.
doi: 10.1016/j.jcp.2007.11.038
URL
|
[10] |
MARTIN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289.
|
[11] |
HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23): 8952-8965.
doi: 10.1016/j.jcp.2010.08.019
URL
|
[12] |
BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452.
doi: 10.1006/jcph.2000.6443
URL
|
[13] |
GEROLYMOS G A D. SÉNÉCHAL , VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228(23): 8481-8524.
doi: 10.1016/j.jcp.2009.07.039
URL
|
[14] |
PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics, 2006, 219(2): 489-497.
doi: 10.1016/j.jcp.2006.07.009
URL
|
[15] |
JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237.
doi: 10.1016/j.jcp.2009.10.028
URL
|
[16] |
DENG X, MAEKAWA H. Compact high-order accurate nonlinear schemes[J]. Journal of Computational Physics, 1997, 130(1): 77-91.
doi: 10.1006/jcph.1996.5553
URL
|
[17] |
PENG J, LIU S, LI S, et al. An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation[J]. Journal of Computational Physics, 2021, 425: 109902.
doi: 10.1016/j.jcp.2020.109902
URL
|
[18] |
ZHANG H, ZHANG F, XU C. Towards optimal high-order compact schemes for simulating compressible flows[J]. Applied Mathematics and Computation, 2019, 355: 221-237.
doi: 10.1016/j.amc.2019.03.001
URL
|
[19] |
马燕凯, 刘化勇, 燕振国, 等. 基于 HWCNS 格式的紧致插值方法研究[J]. 计算力学学报, 2015, 32(3): 388-393.
|
|
MA Yankai, LIU Huayong, YAN Zhenguo, et al. Research on compact interpolation method based on HWCNS scheme[J]. Chinese Journal of Computational Mechanics, 2015, 32(3): 388-393.
|
[20] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258.
doi: 10.1006/jcph.1997.5705
URL
|
[21] |
LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1): 23-39.
doi: 10.1006/jcph.1993.1122
URL
|
[22] |
VAN LEER B. Flux-vector splitting for the Euler equations[J]. Lecture Notes in Physics, 1982, 170(1): 507-512.
|
[23] |
HIEJIMA T. A high-order weighted compact nonlinear scheme for compressible flows[J]. Computers & Fluids, 2022, 232: 105199.
doi: 10.1016/j.compfluid.2021.105199
URL
|
[24] |
EF T, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25-34.
doi: 10.1007/BF01414629
URL
|
[25] |
GOTTLIEB S, SHU C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of Computation, 1998, 67(221): 73-85.
doi: 10.1090/mcom/1998-67-221
URL
|
[26] |
WONGA M L, LELEA S K. High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows[J]. Journal of Computational Physics, 2017, 339: 179-209.
doi: 10.1016/j.jcp.2017.03.008
URL
|
[27] |
LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. Siam Journal on Scientific Computing, 1998, 19(2): 319-340.
doi: 10.1137/S1064827595291819
URL
|
[28] |
ZHANG H, ZHANG F, LIU J, et al. A simple extended compact nonlinear scheme with adaptive dissipation control[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105191.
doi: 10.1016/j.cnsns.2020.105191
URL
|
[29] |
SHI J, ZHANG Y T, SHU C W. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics, 2003, 186(2): 690-696.
doi: 10.1016/S0021-9991(03)00094-9
URL
|
[30] |
ZHAO G, SUN M, XIE S, et al. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator[J]. Applied Mathematics and Computation, 2018, 330: 239-253.
doi: 10.1016/j.amc.2018.01.019
URL
|