[1] |
CONCUS P, FINN R. On the behavior of a capillary surface in a wedge[J]. PNAS, 1969, 63(2): 292-299.
pmid: 16591761
|
[2] |
WEISLOGEL M M, LICHTER S. Capillary flow in an interior corner[J]. Journal of Fluid Mechanics, 1998, 373: 349-378.
doi: 10.1017/S0022112098002535
URL
|
[3] |
WEISLOGEL M M, COLLICOTT S. Analysis of tank PMD rewetting following thrust resettling[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reno, NV, USA: AIAA, 2002: AIAA 2002-0757.
|
[4] |
ENRIQUE R, WEISLOGEL M M. Gravity effects on capillary flows in sharp corners[J]. Physics of Fluids, 2009, 21(4): 1-12.
|
[5] |
WANG C X, XU S H, SUN Z W, et al. A study of the influence of initial liquid volume on the capillary flow in an interior corner under microgravity[J]. International Journal of Heat and Mass Transfer, 2010, 53(9/10): 1801-1807.
doi: 10.1016/j.ijheatmasstransfer.2010.01.009
URL
|
[6] |
李京浩, 陈小前, 黄奕勇, 等. 微重力环境下的不对称内角流动研究[J]. 中国科学: 技术科学, 2012, 42(8): 957-962.
|
|
LI Jinghao, CHEN Xiaoqian, HUANG Yiyong, et al. Study on asymmetric interior corner flow in microgravity condition[J]. Scientia Sinica (Technologica), 2012, 42(8): 957-962.
|
[7] |
沈逸, 张泽宇, 梁益涛, 等. 磁补偿微重力环境实现及磁流体微重力内角流动研究[J]. 化工学报, 2020, 71(8): 3490-3499.
doi: 10.11949/0438-1157.20200291
|
|
SHEN Yi, ZHANG Zeyu, LIANG Yitao, et al. Realization of microgravity environment by magnetic compensation and study on interior corner flow of magnetic fluid in microgravity[J]. CIESC Journal, 2020, 71(8): 3490-3499.
doi: 10.11949/0438-1157.20200291
|
[8] |
RANSOHOFF T C, GAUGLITZ P A, RADKE C J. Snap-off of gas bubbles in smoothly constricted noncircular capillaries[J]. AIChE Journal, 1987, 33(5): 753-765.
doi: 10.1002/(ISSN)1547-5905
URL
|
[9] |
RANSOHOFF T C, RADKE C J. Laminar flow of a wetting liquid along the cormers of a predominantly gas-occupied noncircular pore[J]. Journal of Colloid and Interface Science. 1988, 121(2): 392-401.
doi: 10.1016/0021-9797(88)90442-0
URL
|
[10] |
CHEN Y K, WEISLOGEL M M, NARDIN C L. Capillary-driven flows along rounded interior corners[J]. Journal of Fluid Mechanics, 2006, 566: 235-271.
doi: 10.1017/S0022112006001996
URL
|
[11] |
ZHOU D G, BLUNT M, ORR F M. Hydrocarbon drainage along corners of noncircular capillaries[J]. Journal of Colloid and Interface Science, 1997, 187(1): 11-21.
pmid: 9245311
|
[12] |
魏月兴, 陈小前, 黄奕勇. 内角流动及其在卫星贮箱设计中的应用[J]. 中国科学: 技术科学, 2011, 41(9): 1218-1224.
|
|
WEI Yuexing, CHEN Xiaoqian, HUANG Yiyong. Interior corner flow theory and its application to the satellite propellant management device design[J]. Scientia Sinica (Technologica), 2011, 41(9): 1218-1224.
|
[13] |
MAYER F J, MCGRATH J F, STEELE J W. A class of similarity solutions for the nonlinear thermal conduction problem[J]. Journal of Physics A: Mathematical and General, 1983, 16(14): 3393-3400.
doi: 10.1088/0305-4470/16/14/031
URL
|
[14] |
DONG M, CHATZIS I. The imbibition and flow of a wetting liquid along the corners of a square capillary tube[J]. Journal of Colloid and Interface Science, 1995, 172(2): 278-288.
doi: 10.1006/jcis.1995.1253
URL
|
[15] |
WEISLOGEL M, BUNNELL C, KURTA C, et al. Preliminary results from the capillary flow experiment aboard ISS: The moving contact line boundary condition[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2005: AIAA 2005-1439.
|
[16] |
CHEN Y K. Review of spontaneous capillary driven flow along interior corners[J]. Physics of Gases, 2017, 2(1): 21-29.
|
[17] |
王磊, 厉彦忠, 张少华, 等. 低温推进剂空间管理技术研究进展与展望[J]. 宇航学报, 2020, 41(7): 978-988.
|
|
WANG Lei, LI Yanzhong, ZHANG Shaohua, et al. Research progress and outlooks of cryogenic propellant space management technologies[J]. Journal of Astronautics, 2020, 41(7): 978-988.
|
[18] |
陈忠灿, 李鹏, 孙培杰, 等. 工作于室温温区的热力学排气模拟与增压测试[J]. 上海交通大学学报, 2017, 51(8): 946-953.
|
|
CHEN Zhongcan, LI Peng, SUN Peijie, et al. Simulation of a thermodynamic vent system working at room temperature and its preliminary pressurization testing[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 946-953.
|
[19] |
HARTWIG J, MANN J A. Bubble point pressures of binary methanol/water mixtures in fine-mesh screens[J]. AIChE Journal, 2014, 60(2): 730-739.
doi: 10.1002/aic.v60.2
URL
|
[20] |
HARTWIG J, DARR S. Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems[J]. Applied Thermal Engineering, 2014, 66(1/2): 548-562.
doi: 10.1016/j.applthermaleng.2014.02.022
URL
|
[21] |
魏月兴. 微重力条件下航天器贮箱推进剂管理过程中的流动特性研究[D]. 长沙: 国防科学技术大学, 2013.
|
|
WEI Yuexing. Research on the flow in the process of the propellant management in a spacecraft tank under microgravity[D]. Changsha: National University of Defense Technology, 2013.
|
[22] |
张泽宇, 黄永华, 梁益涛, 等. 磁场力非均匀度对液氧磁补偿微重力自由界面的影响[J]. 真空与低温, 2019, 25(6): 372-378.
|
|
ZHANG Zeyu, HUANG Yonghua, LIANG Yitao, et al. Impact of magnetic force inhomogeneity on free surface of liquid oxygen under magnetically compensated microgravity[J]. Vacuum and Cryogenics, 2019, 25(6): 372-378.
|