[1] |
USNRC. Best-estimate calculations of emergency core cooling system performance: RG 1.157[R]. Washington, USA: Office of Nuclear Regulatory Research, 1989.
|
[2] |
BOYACK B E, CATTON UCLA I, DUFFEY INEL R B, et al. Quantifying reactor safety margins part 1: An overview of the code scaling, applicability, and uncertainty evaluation methodology[J]. Nuclear Engineering and Design, 1990, 119(1): 1-15.
doi: 10.1016/0029-5493(90)90071-5
URL
|
[3] |
GLAESER H, HOFER E, KLOOS M, et al. Uncertainty and sensitivity analysis of a post-experiment calculation in thermal hydraulics[J]. Reliability Engineering & System Safety, 1994, 45(1/2): 19-33.
doi: 10.1016/0951-8320(94)90073-6
URL
|
[4] |
D’AURIA F, DEBRECIN N, GALASSI G M. Outline of the uncertainty methodology based on accuracy extrapolation[J]. Nuclear Technology, 1995, 109(1): 21-38.
doi: 10.13182/NT109-21
URL
|
[5] |
POURGOL-MOHAMMAD M. Thermal-hydraulics system codes uncertainty assessment: A review of the methodologies[J]. Annals of Nuclear Energy, 2009, 36(11/12): 1774-1786.
|
[6] |
D’AURIA F, GLAESER H, LEE S, et al. Best estimate safety analysis for nuclear power plants: Uncertainty evaluation[R]. Vienna, Austria: IAEA, 2008.
|
[7] |
GLAESER H, BAZIN P, BACCOU J, et al. Bemuse phase Ⅵ report: Status report on the area, classification of the methods, conclusions and recommendations[R]. Paris, France: OECD Nuclear Energy Agency, 2011.
|
[8] |
SKOREK T, DE CRÉCY A, KOVTONYUK A, et al. Quantification of the uncertainty of the physical models in the system thermal-hydraulic codes-PREMIUM benchmark[J]. Nuclear Engineering and Design, 2019, 354: 110199.
doi: 10.1016/j.nucengdes.2019.110199
URL
|
[9] |
CELEUX G, GRIMAUD A, LEFÈBVRE Y, et al. Identifying intrinsic variability in multivariate systems through linearized inverse methods[J]. Inverse Problems in Science and Engineering, 2010, 18(3): 401-415.
doi: 10.1080/17415971003624330
URL
|
[10] |
HEO J, TURINSKY P J, DOSTER J M. Optimization of thermal-hydraulic reactor system for SMRs via data assimilation and uncertainty quantification[J]. Nuclear Science and Engineering, 2013, 173(3): 293-311.
doi: 10.13182/NSE11-113
URL
|
[11] |
李冬. 最佳估算模型的不确定性量化方法研究及再淹没模型评估的应用[D]. 上海: 上海交通大学, 2017.
|
|
LI Dong. Investigation of uncertainty quantification method on BE models and application of reflood model evaluation[D]. Shanghai: Shanghai Jiao Tong University, 2017.
|
[12] |
XIONG Q W, GOU J L, CHEN W, et al. Investigation of uncertainty quantification methods for constitutive models and the application to LOFT LBLOCA[J]. Annals of Nuclear Energy, 2019, 132: 119-133.
doi: 10.1016/j.anucene.2019.04.028
URL
|
[13] |
LIU C H, RUBIN D B. The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence[J]. Biometrika, 1994, 81(4): 633-648.
doi: 10.1093/biomet/81.4.633
URL
|
[14] |
WILKS S S. Determination of sample sizes for setting tolerance limits[J]. The Annals of Mathematical Statistics, 1941, 12(1): 91-96.
doi: 10.1214/aoms/1177731788
URL
|
[15] |
FREPOLI C. An overview of Westinghouse realistic large break LOCA evaluation model[J]. Science and Technology of Nuclear Installations, 2008, 2008: 498737.
|
[16] |
RUBIN A, SCHOEDEL A, AVRAMOVA M, et al. OECD/NRC benchmark based on NUPEC PWR sub-channel and bundle tests (PSBT). Volume I: Experimental database and final problem specifications[R]. Paris, France: OECD Nuclear Energy Agency, 2012.
|
[17] |
PANKA I, KERESZTÚRI A. Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data[J]. Kerntechnik, 2014, 79(4): 359-366.
doi: 10.3139/124.110460
URL
|
[18] |
ZIVIS S M. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production[J]. Journal of Heat Transfer, 1964, 86(2): 247-251.
doi: 10.1115/1.3687113
URL
|
[19] |
徐济鋆. 沸腾传热和气液两相流[M]. 第2版. 北京: 原子能出版社, 2001.
|
|
XU Jijun. Boiling heat transfer and gas-liquid two-phase flow[M]. 2nd ed. Beijing: Atomic Energy Press, 2001.
|
[20] |
CASTELLANA F S, ADAMS W T, CASTERLINE J E. Single-phase subchannel mixing in a simulated nuclear fuel assembly[J]. Nuclear Engineering and Design, 1974, 26(2): 242-249.
|