Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (9): 1199-1207.doi: 10.16183/j.cnki.jsjtu.2021.089
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
CHEN Xiaowen1, HAN Yudong2, DING Xiaoping2, HOU Dongwei1()
Received:
2021-03-19
Online:
2022-09-28
Published:
2022-10-09
Contact:
HOU Dongwei
E-mail:houdw@sjtu.edu.cn
CLC Number:
CHEN Xiaowen, HAN Yudong, DING Xiaoping, HOU Dongwei. Multiscale Calculation of Elastic Modulus of Cement Paste Based on Grid Nanoindentation Technology[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1199-1207.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.089
Tab.2
Summary of test results of grid nanoindentation of samples at different water-cement ratios
w/c | 相 | E/GPa | 压痕点数 | 体积分数 |
---|---|---|---|---|
0.2 | PP | - | - | - |
0.2 | LDCSH | - | - | - |
0.2 | HDCSH | 29.66±7.82 | 314 | 0.79 |
0.2 | CH | 56.76±16.13 | 54 | 0.13 |
0.2 | UHP | 97.18±23.76 | 32 | 0.08 |
0.4 | PP | 10.90±6.06 | 117 | 0.29 |
0.4 | LDCSH | 21.24±4.14 | 119 | 0.30 |
0.4 | HDCSH | 31.67±4.26 | 96 | 0.24 |
0.4 | CH | 43.99±7.46 | 62 | 0.16 |
0.4 | UHP | 79.97±8.03 | 5 | 0.01 |
0.6 | PP | 11.79±5.38 | 127 | 0.32 |
0.6 | LDCSH | 21.93±4.61 | 175 | 0.44 |
0.6 | HDCSH | - | - | - |
0.6 | CH | 37.56±9.70 | 97 | 0.24 |
0.6 | UHP | - | - | - |
Tab.3
Test results of elastic modulus of cement paste samples at different water-cement ratios
样品编号 | w/c | E/GPa | E*/GPa | |
---|---|---|---|---|
1 | 0.2 | 35.4 | 37.1±1.6 | 35.5±10.5 |
2 | 0.2 | 38.6 | 37.1±1.6 | 35.5±10.5 |
3 | 0.2 | 37.2 | 37.1±1.6 | 35.5±10.5 |
4 | 0.4 | 21.4 | 20.2±1.5 | 19.2±9.0 |
5 | 0.4 | 20.4 | 20.2±1.5 | 19.2±9.0 |
6 | 0.4 | 18.6 | 20.2±1.5 | 19.2±9.0 |
7 | 0.6 | 12.4 | 11.8±0.8 | 11.2±5.5 |
8 | 0.6 | 11.9 | 11.8±0.8 | 11.2±5.5 |
9 | 0.6 | 10.9 | 11.8±0.8 | 11.2±5.5 |
[1] |
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
doi: 10.1557/JMR.1992.1564 URL |
[2] |
VELEZ K, MAXIMILIEN S, DAMIDOT D, et al. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker[J]. Cement and Concrete Research, 2001, 31(4): 555-561.
doi: 10.1016/S0008-8846(00)00505-6 URL |
[3] |
CONSTANTINIDES G, ULM F J, VLIET K. On the use of nanoindentation for cementitious materials[J]. Materials and Structures, 2003, 36: 191-196.
doi: 10.1007/BF02479557 URL |
[4] |
CONSTANTINIDES G, CHANDRAN K S R, ULM F J, et al. Grid indentation analysis of composite microstructure and mechanics: Principles and validation[J]. Materials Science and Engineering A, 2006, 430(1/2): 189-202.
doi: 10.1016/j.msea.2006.05.125 URL |
[5] |
ULM F J, VANDAMME M, BOBKO C, et al. Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale[J]. Journal of the American Ceramic Society, 2007, 90(9): 2677-2692.
doi: 10.1111/j.1551-2916.2007.02012.x URL |
[6] |
RANDALL N X, VANDAMME M, ULM F J. Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces[J]. Journal of Materials Research, 2009, 24(3): 679-690.
doi: 10.1557/jmr.2009.0149 URL |
[7] |
NĚMEČEK J, ŠMILAUER V, KOPECKÝ L. Nanoindentation characteristics of alkali-activated aluminosilicate materials[J]. Cement and Concrete Composites, 2011, 33(2): 163-170.
doi: 10.1016/j.cemconcomp.2010.10.005 URL |
[8] |
HU C L, LI Z J. A review on the mechanical properties of cement-based materials measured by nanoindentation[J]. Construction and Building Materials, 2015, 90: 80-90.
doi: 10.1016/j.conbuildmat.2015.05.008 URL |
[9] |
HU C L. Microstructure and mechanical properties of fly ash blended cement pastes[J]. Construction and Building Materials, 2014, 73: 618-625.
doi: 10.1016/j.conbuildmat.2014.10.009 URL |
[10] |
BERNARD O, ULM F J, LEMARCHAND E. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials[J]. Cement and Concrete Research, 2003, 33(9): 1293-1309.
doi: 10.1016/S0008-8846(03)00039-5 URL |
[11] |
CONSTANTINIDES G, ULM F J. The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling[J]. Cement and Concrete Research, 2004, 34(1): 67-80.
doi: 10.1016/S0008-8846(03)00230-8 URL |
[12] |
ZAOUI A. Continuum micromechanics: Survey[J]. Journal of Engineering Mechanics, 2002, 128(8): 808-816.
doi: 10.1061/(ASCE)0733-9399(2002)128:8(808) URL |
[13] |
SANAHUJA J, DORMIEUX L, CHANVILLARD G. Modelling elasticity of a hydrating cement paste[J]. Cement and Concrete Research, 2007, 37(10): 1427-1439.
doi: 10.1016/j.cemconres.2007.07.003 URL |
[14] |
JIANG L, ZHANG Y M, HU C L, et al. Calculation of elastic modulus of early-age cement paste[J]. Advances in Cement Research, 2012, 24(4): 193-201.
doi: 10.1680/adcr.11.00002 URL |
[15] |
GAO X, WEI Y, HUANG W. Effect of individual phases on multiscale modeling mechanical properties of hardened cement paste[J]. Construction and Building Materials, 2017, 153: 25-35.
doi: 10.1016/j.conbuildmat.2017.07.074 URL |
[16] |
LIANG S M, WEI Y, WU Z H. Multiscale modeling elastic properties of cement-based materials considering imperfect interface effect[J]. Construction and Building Materials, 2017, 154: 567-579.
doi: 10.1016/j.conbuildmat.2017.07.196 URL |
[17] | DAMIEN D, WANG Y, XI Y P. Prediction of elastic properties of cementitious materials based on multiphase and multiscale micromechanics theory[J]. Journal of Engineering Mechanics, 2019, 145(10): 04019074. |
[18] |
PAPADOPOULOS V, IMPRAIMAKIS M. Multiscale modeling of carbon nanotube reinforced concrete[J]. Composite Structures, 2017, 182: 251-260.
doi: 10.1016/j.compstruct.2017.09.061 URL |
[19] |
XU J, WANG B B, ZUO J Q. Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach[J]. Cement and Concrete Composites, 2017, 81: 1-10.
doi: 10.1016/j.cemconcomp.2017.04.003 URL |
[20] |
GÖBEL L, BOS C, SCHWAIGER R, et al. Micromechanics-based investigation of the elastic properties of polymer-modified cementitious materials using nanoindentation and semi-analytical modeling[J]. Cement and Concrete Composites, 2018, 88: 100-114.
doi: 10.1016/j.cemconcomp.2018.01.010 URL |
[21] | ADESSINA A, BEN FRAJ A, BARTHÉLÉMY J F, et al. Experimental and micromechanical investigation on the mechanical and durability properties of re-cycled aggregates concrete[J]. Cement and Concrete Research, 2019, 126: 105900. |
[22] |
STEFANIUK D, NIEWIADOMSKI P, MUSIAŁ M, et al. Elastic properties of self-compacting concrete modified with nanoparticles: Multiscale approach[J]. Archives of Civil and Mechanical Engineering, 2019, 19(4): 1150-1162.
doi: 10.1016/j.acme.2019.06.006 URL |
[23] | FANG G H, ZHANG M Z. Multiscale micromecha-nical analysis of alkali-activated fly ash-slag paste[J]. Cement and Concrete Research, 2020, 135: 106141. |
[24] | ZHANG Y, YAN Z G, JU J W, et al. A multi-level micromechanical model for elastic properties of hybrid fiber reinforced concrete[J]. Construction and Buil-ding Materials, 2017, 152: 804-817. |
[25] |
HONORIO T, BROCHARD L, BARY B. Statistical variability of mechanical fields in thermo-poro-elasticity: Multiscale analytical estimations applied to cement-based materials at early-age[J]. Cement and Concrete Research, 2018, 110: 24-41.
doi: 10.1016/j.cemconres.2018.05.010 URL |
[26] |
OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20.
doi: 10.1557/jmr.2004.19.1.3 URL |
[27] | 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006. |
SHEN Guanlin, HU Gengkai. Mechanics of compo-site materials[M]. Beijing: Tsinghua University Press, 2006. | |
[28] |
MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574.
doi: 10.1016/0001-6160(73)90064-3 URL |
[29] |
HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4): 213-222.
doi: 10.1016/0022-5096(65)90010-4 URL |
[30] |
ZHENG Q S, DU D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11): 2765-2788.
doi: 10.1016/S0022-5096(01)00078-3 URL |
[31] |
朱合华, 陈庆. 多相材料有效性能预测的高精度方法[J]. 力学学报, 2017, 49(1): 41-47.
doi: 10.6052/0459-1879-16-347 |
ZHU Hehua, CHEN Qing. An approach for predicting the effective properties of multiphase composite with high accuracy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47.
doi: 10.6052/0459-1879-16-347 |
|
[32] |
JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-II[J]. Cement and Concrete Research, 2008, 38(3): 275-289.
doi: 10.1016/j.cemconres.2007.10.006 URL |
[33] |
JENNINGS H M, THOMAS J J, GEVRENOV J S, et al. A multi-technique investigation of the nanoporosity of cement paste[J]. Cement and Concrete Research, 2007, 37(3): 329-336.
doi: 10.1016/j.cemconres.2006.03.021 URL |
[1] | SHU Junqing, XU Yuhui, XIA Tangbin, PAN Ershun, XI Lifeng. A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 564-575. |
[2] | LIU Changjiang, ZHAO Bing, CHEN Wujun. Test of Uniaxial Tensile Mechanical Properties of ECTFE Foils at Various Temperatures [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 387-393. |
[3] | HUANG Tao (皇涛), WANG Kun (王锟), ZHAN Mei (詹梅), GUO Junqing (郭俊卿), CHEN Xuewen (陈学文), CHEN Fuxiao (陈拂晓), SONG Kexing (宋克兴). Wall Thinning Characteristics of Ti-3Al-2.5V Tube in Numerical Control Bending Process [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 647-653. |
[4] | JING Yu-hanga,b* (荆宇航), YU Kai-pinga (于开平), QIN Xiana (覃弦), SHEN Junb* (沈军). Composition-Dependent Mechanical and Thermal Transport Properties of Carbon/Silicon Core/Shell Nanowires [J]. Journal of shanghai Jiaotong University (Science), 2012, 17(6): 743-747. |
[5] | KE Chang-Ren-1, 2 , JIANG Jun-Ling-2, GE Xiu-Run-1, 3 . Numerical Simulation of Heterogeneous Rock Dynamic Fracture Based on Virtual Internal Bond Model [J]. Journal of Shanghai Jiaotong University, 2012, 46(01): 142-145. |
[6] | LIU Chang, XU Jin-Quan, MENG Xiang-Qi, LI Chen. Analysis of Interface Macrostructure of Thin Coating Material and Its Related Elastic Mechanical Behavior Based on AFM [J]. Journal of Shanghai Jiaotong University, 2011, 45(10): 1485-1488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||