Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (9): 1176-1187.doi: 10.16183/j.cnki.jsjtu.2021.258
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
CHUANG Zhenju(), LI Chunzheng, LIU Shewen
Received:
2021-07-14
Online:
2022-09-28
Published:
2022-10-09
CLC Number:
CHUANG Zhenju, LI Chunzheng, LIU Shewen. Numerical Analysis of Influence of Blade Icing on Dynamic Response of Integrated Wind Turbine Structure[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1176-1187.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.258
Tab.2
Blade structure distribution and airfoil characteristics
叶展位置/m | 弦长/m | 扭转角/(°) | 翼型类型 |
---|---|---|---|
0 | 3.542 | 13.308 | Cylinder1 |
1.3667 | 3.542 | 13.308 | Cylinder1 |
4.1 | 3.854 | 13.308 | Cylinder1 |
6.8333 | 4.167 | 13.308 | Cylinder2 |
10.25 | 4.557 | 13.308 | DU40_A17 |
14.35 | 4.652 | 11.48 | DU35_A17 |
18.45 | 4.458 | 10.162 | DU35_A17 |
22.55 | 4.249 | 9.011 | DU30_A17 |
26.65 | 4.007 | 7.795 | DU25_A17 |
30.75 | 3.748 | 6.544 | DU25_A17 |
34.85 | 3.502 | 5.361 | DU21_A17 |
38.95 | 3.256 | 4.188 | DU21_A17 |
43.05 | 3.01 | 3.125 | NACA64_A17 |
47.15 | 2.764 | 2.319 | NACA64_A17 |
51.25 | 2.518 | 1.526 | NACA64_A17 |
54.6667 | 2.313 | 0.863 | NACA64_A17 |
57.4 | 2.086 | 0.37 | NACA64_A17 |
60.1333 | 1.419 | 0.106 | NACA64_A17 |
61.5 | 1.419 | 0.106 | NACA64_A17 |
[1] | LEHTOMÄKI V. Emerging from the cold[J]. Windpower Monthly, 2016, 32(8): 32-34. |
[2] |
HOCHART C, FORTIN G, PERRON J, et al. Wind turbine performance under icing conditions[J]. Wind Energy, 2008, 11(4): 319-333.
doi: 10.1002/we.258 URL |
[3] |
LEHTOMÄKI V, RISSANEN S, WADHAM-GAGNON M, et al. Fatigue loads of iced turbines: Two case studies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 158: 37-50.
doi: 10.1016/j.jweia.2016.09.002 URL |
[4] | 王可光, 吴辉碇, 王彩欣, 等. 渤海冰期的基本水文气象参量研究[J]. 海洋通报, 1999, 18(2): 17-28. |
WANG Keguang, WU Huiding, WANG Caixin, et al. A study of basic hydrologic and meteorological parametersin the ice-covered Bohai Sea[J]. Marine Science Bulletin, 1999, 18(2): 17-28. | |
[5] | SHIN J, BOND T.Results of an icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel[C]// 30th Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 1992: 647. |
[6] |
HAN Y Q, PALACIOS J, SCHMITZ S. Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 109: 55-67.
doi: 10.1016/j.jweia.2012.06.001 URL |
[7] | 胡良权, 陈进格, 沈昕, 等. 结冰对风力机载荷的影响[J]. 上海交通大学学报, 2018, 52(8): 904-909. |
HU Liangquan, CHEN Jinge, SHEN Xin, et al. Load of wind turbine affected by icing[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 904-909. | |
[8] | SWITCHENKO D, HABASHI W, REID T, et al. FENSAP-ICE simulation of complex wind turbine icing events, and comparison to observed performance data[C]// 32nd ASME Wind Energy Symposium. Reston, Virginia: AIAA, 2014: 1399. |
[9] | 蒋维, 李亚冬, 李海波, 等. 水平轴风力机桨叶覆冰数值模拟[J]. 太阳能学报, 2014, 35(1): 83-88. |
JIANG Wei, LI Yadong, LI Haibo, et al. Simulation of icing on horizontal-axis wind turbine blade[J]. Acta Energiae Solaris Sinica, 2014, 35(1): 83-88. | |
[10] | 郝艳捧, 刘国特, 阳林, 等. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报, 2015, 30(10): 292-300. |
HAO Yanpeng, LIU Guote, YANG Lin, et al. Study on ice numerical simulation and its power loss characteristics for the blades of wind turbine[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 292-300. | |
[11] | 梁健, 舒立春, 胡琴, 等. 风力机叶片雨淞覆冰的三维数值模拟及试验研究[J]. 中国电机工程学报, 2017, 37(15): 4430-4436. |
LIANG Jian, SHU Lichun, HU Qin, et al. 3-D numerical simulations and experiments on glaze ice accretion of wind turbine blades[J]. Proceedings of the CSEE, 2017, 37(15): 4430-4436. | |
[12] | 刘杰, 杨倩, 吴涛, 等. 霜冰条件下风力机翼型结冰的数值计算预测[J]. 机电一体化, 2020, 26(5): 3-11. |
LIU Jie, YANG Qian, WU Tao, et al. Numerical simulation prediction of icing on airfoil of wind turbine blade under rime ice conditions[J]. Mechatronics, 2020, 26(5): 3-11. | |
[13] |
WANG Q, XIAO J P, ZHANG T T, et al. A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method[J]. Renewable Energy, 2020, 146: 342-358.
doi: 10.1016/j.renene.2019.06.109 URL |
[14] |
WANG Q, YI X, LIU Y, et al. Simulation and analysis of wind turbine ice accretion under yaw condition via an Improved Multi-Shot Icing Computational Model[J]. Renewable Energy, 2020, 162: 1854-1873.
doi: 10.1016/j.renene.2020.09.107 URL |
[15] | National Renewable Energy Laboratory. FAST v8[CP/OL]. (2016-07-21) [2021-07-14]. https://www.nrel.gov/wind/nwtc/fastv8.html. |
[16] | WIROGO S, SRIRAMBHATLA S. An eulerian method to calculate the collection efficiency on two and three dimensional bodies[C]// 41st Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2003: 1073. |
[17] | SCHILLER L V, NAUMANN Z Z. Über die grundlegenden berechnungen bei der schwerkraftaufbereitung[J]. Zeitschrift Des Vereines Deutscher Ingenieure, 1933, 77: 318-321. |
[18] |
MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
doi: 10.2514/8.2520 URL |
[19] | JONKMAN J, BUHL M. New developments for the NWTC’s FAST aeroelastic HAWT simulator[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 2004: 504. |
[20] | KANE T R, LEVINSON D A. Dynamics, theory and applications[M]. New York, USA: McGraw Hill, 1985. |
[21] | POPKO W, VORPAHL F, ZUGA A, et al. Offshore code comparison collaboration continuation (OC4), Phase 1—Results of coupled simulations of an offshore wind turbine with jacket support structure[C]// The twenty-second international offshore and polar engineering conference. Rhodes, Greece: OnePetro, 2012: 337-346. |
[22] | JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado: Office of Scientific and Technical Information, 2009. |
[23] | FORTIN G, LULIANO E, MINGIONE G, et al. CIRAAMIL ice accretion code improvements[C]// 1st AIAA Atmospheric and Space Environments Conference. Reston, Virginia: AIAA, 2009: 3968. |
[24] |
FU P, FARZANEH M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4/5): 181-188.
doi: 10.1016/j.jweia.2009.10.014 URL |
[25] | HANSEN C. AirfoilPrep: An excel workbook for generating airfoil tables for AeroDyn[EB/OL].(2004-11-1) [2021. 07. 14]. https://www.nrel.gov/wind/nwtc/airfoil-prep.html. |
[1] | HU Liangquan,CHEN Jinge,SHEN Xin,ZHU Xiaocheng,DU Zhaohui. Load of Wind Turbine Affected by Icing [J]. Journal of Shanghai Jiaotong University, 2018, 52(8): 904-909. |
[2] | YAN Fasuo1,ZHANG Chengxiang1,YANG Hui1,PENG Cheng2. Coupling Hydrodynamic and Aerodynamic Computations of Offshore Floating Wind Turbines [J]. Journal of Shanghai Jiaotong University, 2014, 48(04): 570-575. |
[3] | LIU Xiaojing,YANG Ting,YAN Yong,CHENG Xu . ThermalHydraulic and Neutronics Analysis for MultilayerFuel Assemblies of Mixed Spectrum Supercritical Watercooled Reactor [J]. Journal of Shanghai Jiaotong University, 2010, 44(01): 90-0094. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||