Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (8): 1004-1013.doi: 10.16183/j.cnki.jsjtu.2021.486
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
LI Hengjie1,3, ZHU Jianghao1, FU Xiaofei2, FANG Chen2, LIANG Daming1, ZHOU Yun3()
Received:
2021-11-30
Online:
2022-08-28
Published:
2022-08-26
Contact:
ZHOU Yun
E-mail:yun.zhou@sjtu.edu.cn
CLC Number:
LI Hengjie, ZHU Jianghao, FU Xiaofei, FANG Chen, LIANG Daming, ZHOU Yun. Ultra-Short-Term Load Forecasting of Electric Vehicle Charging Stations Based on Ensemble Learning[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1004-1013.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.486
Tab.2
Names and abbreviations of 16 basic regression frameworks of different algorithms
序号 | 算法名称 | 简称 |
---|---|---|
1 | Light Gradient Boosting Machin | LGBM |
2 | Extra Trees Regressor | Et |
3 | Random Forest | Rf |
4 | Gradient Boosting Regressor | Gbr |
5 | Decision Tree | Dt |
6 | Bayesian Ridge | Br |
7 | Ridge Regression | Ridge |
8 | AdaBoost Regressor | Ada |
9 | Lasso Regression | Lasso |
10 | Linear Regression | Lr |
11 | Elastic Net | En |
12 | Orthogonal Matching Pursuit | Omp |
13 | Lasso Least Angle Regression | Llar |
14 | K Neighbors Regressor | Knr |
15 | Huber Regressor | Huber |
16 | Passive Aggressive Regressor | Par |
Tab.3
Performance comparison of 16 basic regression learners
模型 | MAE | MSE | RMSD | R2 | MAPE | RMSE | TT/s |
---|---|---|---|---|---|---|---|
LGBM | 1.4835 | 9.9652 | 3.1472 | 0.9271 | 1.4090 | 0.1603 | 0.9520 |
Et | 1.4767 | 10.9566 | 3.2791 | 0.9166 | 1.1199 | 0.1542 | 19.9650 |
Rf | 1.4707 | 11.0504 | 3.2915 | 0.9161 | 1.2410 | 0.1519 | 10.6240 |
Gbr | 1.7289 | 11.1057 | 3.3130 | 0.9156 | 1.9650 | 0.1876 | 37.1450 |
Dt | 1.7881 | 16.4038 | 3.9911 | 0.8900 | 1.4830 | 0.1817 | 1.2130 |
Br | 3.6100 | 34.2069 | 5.8318 | 0.8016 | 7.4220 | 0.4518 | 247.2700 |
Ridge | 3.6205 | 34.3932 | 5.8494 | 0.8005 | 7.3350 | 0.4535 | 1.9980 |
Ada | 4.8668 | 37.4468 | 6.0925 | 0.7160 | 11.5790 | 0.5769 | 56.5100 |
Lasso | 3.5851 | 38.7354 | 6.2008 | 0.7797 | 6.7480 | 0.4169 | 0.4880 |
Lr | 4.0792 | 38.8846 | 6.2222 | 0.7782 | 8.4950 | 0.5090 | 29.1220 |
En | 3.5522 | 39.6849 | 6.2760 | 0.7750 | 6.2390 | 0.4039 | 0.6320 |
Omp | 3.4045 | 42.6831 | 6.5088 | 0.7602 | 4.9530 | 0.3717 | 1.5520 |
Llar | 10.6004 | 202.9634 | 14.2317 | -0.0014 | 26.0870 | 0.9852 | 0.8980 |
Knr | 10.7520 | 226.0024 | 15.0233 | -0.1179 | 25.1830 | 0.9985 | 9.7160 |
Huber | 9.3039 | 234.1162 | 15.2823 | -0.1545 | 14.4480 | 0.9020 | 10.5580 |
Par | 14.9551 | 318.1632 | 17.6986 | -0.5662 | 20.0780 | 1.3277 | 1.7940 |
[1] | 陈文彬, 徐大勇, 郭瑞鹏. 负荷预测对新能源电网多目标优化调度的影响规律研究[J]. 电力系统保护与控制, 2020, 48(10): 46-51. |
CHEN Wenbin, XU Dayong, GUO Ruipeng. A study on the influence rule of load forecasting on multi-objective optimal dispatching of a new-energy grid[J]. Power System Protection and Control, 2020, 48(10): 46-51. | |
[2] | 孙超, 吕奇, 朱思曈, 等. 基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J]. 高电压技术, 2021, 47(8): 2885-2898. |
SUN Chao, LÜ Qi, ZHU Sitong, et al. Ultra-short-term power load forecasting based on two-layer XGBoost algorithm considering the influence of multiple features[J]. High Voltage Engineering, 2021, 47(8): 2885-2898. | |
[3] | 李玉志, 刘晓亮, 邢方方, 等. 基于Bi-LSTM和特征关联性分析的日尖峰负荷预测[J]. 电网技术, 2021, 45(7): 2719-2730. |
LI Yuzhi, LIU Xiaoliang, XING Fangfang, et al. Daily peak load prediction based on correlation analysis and Bi-directional long short-term memory network[J]. Power System Technology, 2021, 45(7): 2719-2730. | |
[4] | 罗凤章, 张旭, 杨欣, 等. 基于深度学习的综合能源配电系统负荷分析预测[J]. 高电压技术, 2021, 47(1): 23-32. |
LUO Fengzhang, ZHANG Xu, YANG Xin, et al. Load analysis and prediction of integrated energy distribution system based on deep learning[J]. High Voltage Engineering, 2021, 47(1): 23-32. | |
[5] | 谭嘉, 李知艺, 杨欢, 等. 基于分布式优化思想的配电网用电负荷多层协同预测方法[J]. 上海交通大学学报, 2021, 55(12): 1544-1553. |
TAN Jia, LI Zhiyi, YANG Huan, et al. A multi-level collaborative load forecasting method for distribution networks based on distributed optimization[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1544-1553. | |
[6] | 钟光耀, 邰能灵, 黄文焘, 等. 基于多维聚类的配变负荷注意力短期预测方法[J]. 上海交通大学学报, 2021, 55(12): 1532-1543. |
ZHONG Guangyao, TAI Nengling, HUANG Wentao, et al. Attention short-term forecasting method of distribution load based on multi-dimensional clustering[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1532-1543. | |
[7] | 林珊, 王红, 齐林海, 等. 基于条件生成对抗网络的短期负荷预测[J]. 电力系统自动化, 2021, 45(11): 52-60. |
LIN Shan, WANG Hong, QI Linhai, et al. Short-term load forecasting based on conditional generative adversarial network[J]. Automation of Electric Power Systems, 2021, 45(11): 52-60. | |
[8] | 肖白, 肖志峰, 姜卓, 等. 基于降噪自编码器、奇异谱分析和长短期记忆神经网络的空间电力负荷态势感知[J]. 中国电机工程学报, 2021, 41(14): 4858-4867. |
XIAO Bai, XIAO Zhifeng, JIANG Zhuo, et al. Spatial load situation awareness based on denoising autoencoder, singular spectrum analysis and long short-term memory neural networks[J]. Proceedings of the CSEE, 2021, 41(14): 4858-4867. | |
[9] | 范士雄, 刘幸蔚, 於益军, 等. 基于多源数据和模型融合的超短期母线负荷预测方法[J]. 电网技术, 2021, 45(1): 243-250. |
FAN Shixiong, LIU Xingwei, YU Yijun, et al. Multi-source data and hybrid neural network based ultra-short-term bus load forecasting[J]. Power System Technology, 2021, 45(1): 243-250. | |
[10] | 张金金, 张倩, 马愿, 等. 基于改进的随机森林和密度聚类的短期负荷频域预测方法[J]. 控制理论与应用, 2020, 37(10): 2257-2265. |
ZHANG Jinjin, ZHANG Qian, MA Yuan, et al. Short-term load frequency domain prediction method based on improved random forest and density-based spatial clustering of applications with noise[J]. Control Theory & Applications, 2020, 37(10): 2257-2265. | |
[11] | 罗平, 程晟, 王严, 等. 考虑用户出行特性的电动汽车充电负荷预测[J]. 华中科技大学学报(自然科学版), 2020, 48(11): 126-132. |
LUO Ping, CHENG Sheng, WANG Yan, et al. Electric vehicle charging load forecast considering user's travel characteristics[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(11): 126-132. | |
[12] |
MA X J, SHA J L, WANG D H, et al. Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning[J]. Electronic Commerce Research and Applications, 2018, 31: 24-39.
doi: 10.1016/j.elerap.2018.08.002 URL |
[13] |
SHAKER B, YU M S, SONG J S, et al. LightBBB: computational prediction model of blood-brain-barrier penetration based on LightGBM[J]. Bioinformatics, 2020, 37(8): 1135-1139.
doi: 10.1093/bioinformatics/btaa918 URL |
[14] |
WANG Y Y, CHEN J, CHEN X Q, et al. Short-term load forecasting for industrial customers based on TCN-LightGBM[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1984-1997.
doi: 10.1109/TPWRS.2020.3028133 URL |
[15] | KE G, MENG Q, FINLEY T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30: 3146-3154. |
[16] | MEHTA M, AGRAWAL R, RISSANEN J. SLIQ: A fast scalable classifier for data mining[C]// Advances in Database Technology - EDBT '96. Avignon, France: Springer, 1996: 18-32. |
[17] | ZHOU Z H. Ensemble Methods[M]. New York, USA: Chapman and Hall (CRC Press), 2012. |
[18] | REDDY L N, BUTAKOV S, ZAVARSKY P. Applying ML algorithms to improve traffic classification in intrusion detection systems[C]// 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing. Beijing, China: IEEE, 2020: 1-6. |
[19] | COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1): 15-18. |
[20] |
LING R F. Residuals and influence in regression[J]. Technometrics, 2012, 26(4): 413-415.
doi: 10.1080/00401706.1984.10487996 URL |
[21] | 李汉巨. 考虑气象因素累积效应的电力系统96点日负荷预测方法[J]. 电气技术, 2018, 19(4): 28-32. |
LI Hanju. The 96 point daily load forecasting method for power system considering the cumulative effect of meteorological factors[J]. Electrical Engineering, 2018, 19(4): 28-32. | |
[22] |
CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623.
doi: 10.7717/peerj-cs.623 URL |
[23] | BECTA. Elaadnl[EB/OL]. (2020-01-15)[2021-08-23]. https://platform.elaad.io/. |
[1] | LI Lingfang, CHEN Zhanpeng, HU Yan, TAI Nengling, GAO Mengping, ZHU Tao. Expansion Planning of Renewable Energy Power System Considering Flexibility and Economy [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801. |
[2] | LIU Mingtao, XIE Jun, ZHANG Qiuyan, BAO Changyu, CHANG Yifan, DUAN Jianan, SHI Xionghua, BAO Yong. Short-Term Production Simulation of Power System Containing Wind Power Under Carbon Trading Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1598-1607. |
[3] | HUANG Jinchao,MA Yinghua,QI Kaiyue,LI Yichen,XIA Yuanyi. An Ensemble-Based Intrusion Detection Algorithm [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1382-1387. |
[4] | LI Chengyu (李程宇), SHAO Shuai* (邵 帅). A Dynamic Computable General Equilibrium Simulation of China’s Innovation-Based Economy Under the New Normal [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(3): 335-342. |
[5] | YANG Yi1* (杨熠), LIN Renwen2 (林仁文). Property Protection, Financial Constraints and Economic Growth [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(2): 192-198. |
[6] | YU Haisong,PU Yun,LIU Haixu,WANG Zhouquan. Regional Transportation Investment Structure Optimization Under Economic Distribution Pattern [J]. Journal of Shanghai Jiaotong University, 2015, 49(04): 450-456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||