[1] |
WOLSZCZAK P, LONKWIC P, CUNHA A, et al. Robust optimization and uncertainty quantification in the nonlinear mechanics of an elevator brake system[J]. Meccanica, 2019, 54(7):1057-1069.
doi: 10.1007/s11012-019-00992-7
URL
|
[2] |
樊朝锺. 电梯曳引机电磁制动系统故障检测及系统测试[J]. 中国设备工程, 2018(23):104-106.
|
|
FAN Chaozhong. Fault detection and system test of electromagnetic braking system of elevator traction machine[J]. China Plant Engineering, 2018(23):104-106.
|
[3] |
赵海文, 吴云龙, 贺鹏, 等. 电梯曳引机制动器故障检测方法研究[J]. 机床与液压, 2018, 46(1):185-188.
|
|
ZHAO Haiwen, WU Yunlong, HE Peng, et al. Research for detection method of elevator tractor brake fault[J]. Machine Tool & Hydraulics, 2018, 46(1):185-188.
|
[4] |
周前飞, 丁树庆, 冯月贵, 等. 基于支持向量机的电梯制动器智能监测预警系统[J]. 中国特种设备安全, 2018, 34(5):22-27.
|
|
ZHOU Qianfei, DING Shuqing, FENG Yuegui, et al. The elevator brake intelligent monitoring and fault early warning system based on SVM[J]. China Special Equipment Safety, 2018, 34(5):22-27.
|
[5] |
贺无名, 王培良, 沈万昌. 基于LS-SVM的电梯制动器故障诊断[J]. 工矿自动化, 2010, 36(2):44-48.
|
|
HE Wuming, WANG Peiliang, SHEN Wanchang. Fault diagnosis of elevator brake based on LS-SVM[J]. Industry and Mine Automation, 2010, 36(2):44-48.
|
[6] |
RAMASSO E. Investigating computational geometry for failure prognostics[J]. International Journal of Prognostics and Health Management, 2014, 5(1):1-18.
|
[7] |
SI X S, WANG W B, HU C H, et al. Remaining useful life estimation—A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1):1-14.
doi: 10.1016/j.ejor.2010.11.018
URL
|
[8] |
TAN C Q, SUN F C, KONG T, et al. A survey on deep transfer learning[M]// Artificial Neural Networks and Machine Learning-ICANN 2018. Cham: Springer International Publishing, 2018: 270-279.
|
[9] |
ZHAO Z B, ZHANG Q Y, YU X L, et al. Unsupervised deep transfer learning for intelligent fault diagnosis: An open source and comparative study[EB/OL]. (2019-12-28)[2020-06-09]. https://arxiv.org/abs/1912.12528.
|
[10] |
YANG B, LEI Y G, JIA F, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019, 122:692-706.
doi: 10.1016/j.ymssp.2018.12.051
URL
|
[11] |
AHN E, KUMAR A, FENG D G, et al. Unsupervised deep transfer feature learning for medical image classification[C]// 2019 IEEE 16th International Symposium on Biomedical Imaging. Venice, Italy: IEEE, 2019: 1915-1918.
|
[12] |
TAHMORESNEZHAD J, HASHEMI S. Visual domain adaptation via transfer feature learning[J]. Knowledge and Information Systems, 2017, 50(2):585-605.
doi: 10.1007/s10115-016-0944-x
URL
|
[13] |
宋鹏, 郑文明, 赵力. 基于特征迁移学习方法的跨库语音情感识别[J]. 清华大学学报(自然科学版), 2016, 56(11):1179-1183.
|
|
SONG Peng, ZHENG Wenming, ZHAO Li. Cross-corpus speech emotion recognition based on a feature transfer learning method[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(11):1179-1183.
|
[14] |
SUN C, MA M, ZHAO Z B, et al. Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4):2416-2425.
doi: 10.1109/TII.9424
URL
|
[15] |
JIA F, LEI Y G, GUO L, et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J]. Neurocomputing, 2018, 272:619-628.
doi: 10.1016/j.neucom.2017.07.032
URL
|
[16] |
ZHANG B, LI W, TONG Z, et al. Bearing fault diagnosis under varying working condition based on domain adaptation[EB/OL]. (2017-07-31)[2020-06-09]. https://arxiv.org/abs/1707.09890.
|