Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (6): 716-728.doi: 10.16183/j.cnki.jsjtu.2019.254
Special Issue: 《上海交通大学学报》2021年“航空航天科学技术”专题; 《上海交通大学学报》2021年12期专题汇总专辑
Previous Articles Next Articles
HE Xiawei1,2, CAI Yunze1(), YAN Lingling2
Received:
2020-09-05
Online:
2021-06-28
Published:
2021-06-30
Contact:
CAI Yunze
E-mail:yzcai@sjtu.edu.cn
CLC Number:
HE Xiawei, CAI Yunze, YAN Lingling. A Combined Residual Detection Method of Reaction Wheel for Fault Detection[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 716-728.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.254
Tab.1
Main parameters of reaction wheel
序号 | 参数 | 数值 |
---|---|---|
1 | 反作用轮惯量, J/(kg·m2) | 0.0229 |
2 | 电机电动势反馈常数,Ke/(V·rad-1·s) | 0.029 |
3 | 输入阻抗,Rin/Ω | 2 |
4 | 母线电压,Vbus/V | 28 |
5 | 偏置电压,Vbias/V | 6 |
6 | 电压反馈增益Kf | 0.5 |
7 | 驱动增益,Gd/(A·V-1) | 0.37 |
8 | 驱动频率,ωd/(rad·s-1) | 2000 |
9 | 电机转矩参数,Kt/(N·m·A-1) | 0.054 |
10 | 超速循环增益,Ks/(V·rad-1·s) | 95 |
11 | 限制转速,ωs/(r·min-1) | 5000 |
12 | 转矩噪声角偏差,θa/rad | 0.05 |
13 | 高通滤波器频率ωa/(rad·s-1) | 0.2 |
14 | 库伦摩擦因数τc | 0.00477 |
Tab.2
Common fault modes of reaction wheel
代号 | 故障模式 | 故障表现 | 故障原因 |
---|---|---|---|
F1 | 卡死故障 | 输出力矩首先产生一个巨大的反向扰动,然后快速变为零 | 电子转子不启动、电机转子和定子抱死、转轴断裂、电路短路 |
F2 | 空转故障 | 无法正常响应控制指令,在摩擦力矩作用下转速减小,输出力矩几乎为零 | 电子线路、驱动电机或是电源供应故障 |
F3 | 摩擦故障 | 摩擦力矩增大导致反作用轮输出力矩小于控制力矩,影响控制效果 | 轴承温度增高、轴承润滑差、保持架不稳定、轮体真空密封失效、压力降低 |
F4 | 增益下降故障 | 输出力矩相对期望力矩比例减小 | 驱动电机故障、元器件老化失效 |
F5 | 缓变故障 | 摩擦力矩随时间缓慢增加 | 故障原因与F3摩擦故障一致 |
F6 | 跳变故障 | 转速波动,产生非预期力矩 | 母线电压故障或存在间歇性时变故障 |
Tab.5
Performance comparison of fault detection method at inconsistent telemetry frequencies
故障 | 频率是否一致 | SP/% | Acc/% | 故障 | 频率是否一致 | SP/% | Acc/% |
---|---|---|---|---|---|---|---|
F1 | 是 | 100 | 100 | F4(K4=0.79) | 是 | 98.39 | 98.80 |
F1 | 否 | 98.59 | 99.30 | F4(K4=0.79) | 否 | 83.79 | 90.33 |
F2 | 是 | 99.17 | 99.59 | F5(β5=0.21×10-3) | 是 | 88.48 | 88.48 |
F2 | 否 | 99.17 | 99.59 | F5(β5=0.21×10-3) | 否 | 87.52 | 87.52 |
F3(K3=1.43) | 是 | 98.31 | 98.68 | F6 | 是 | 99.92 | 98.80 |
F3(K3=1.43) | 否 | 81.22 | 89.04 | F6 | 否 | 100 | 98.68 |
[1] | 江山. 美“开普勒”望远镜出现重大故障[J]. 太空探索, 2013(7):46-46. |
JIANG Shan. Major failure of Kepler in USA[J]. Space Exploration, 2013(7):46-46. | |
[2] | 曲春娣, 张洪钺. 卫星动量轮闭环系统的UIO双观测器故障诊断[J]. 航天控制, 2005, 23(6):66-71. |
QU Chundi, ZHANG Hongyue. The fault diagnosis of momentum close-loop system used in satellite based on the UIO double observers[J]. Aerospace Control, 2005, 23(6):66-71. | |
[3] |
BALDI P, BLANKE M, CASTALDI P, et al. Fault diagnosis for satellite sensors and actuators using nonlinear geometric approach and adaptive observers[J]. International Journal of Robust and Nonlinear Control, 2019, 29(16):5429-5455.
doi: 10.1002/rnc.v29.16 URL |
[4] | 李知周, 张锐, 朱振才 等. 基于扩展卡尔曼滤波的动量轮故障检测方法[J]. 航空学报, 2010, 31(8):1614-1621. |
LI Zhizhou, ZHANG Rui, ZHU Zhencai, et al. Extended Kalman filter-based fault detection for momentum wheel[J]. Acta Aeronautica ET Astronautica Sinica, 2010, 31(8):1614-1621. | |
[5] | 吴红芳, 王志. 基于扩展卡尔曼滤波器的航天器姿控飞轮故障诊断[J]. 航天控制, 2012, 30(3):34-37. |
WU Hongfang, WANG Zhi. The fault diagnosis of spacecraft attitude control flywheel based on extended Kalman filter[J]. Aerospace Control, 2012, 30(3):34-37. | |
[6] |
LIM J K, PARK C G. Satellite fault detection and isolation scheme with modified adaptive fading EKF[J]. Journal of Electrical Engineering and Technology, 2014, 9(4):1401-1410.
doi: 10.5370/JEET.2014.9.4.1401 URL |
[7] |
RAHIMI A, KUMAR K D, ALIGHANBARI H. Fault estimation of satellite reaction wheels using covariance based adaptive unscented Kalman filter[J]. Acta Astronautica, 2017, 134:159-169.
doi: 10.1016/j.actaastro.2017.02.003 URL |
[8] | 余鑫. 基于小波包分析的小飞轮轴承故障诊断方法研究[J]. 洛阳理工学院学报(自然科学版), 2013, 23(1):43-46. |
YU Xin. Fault diagnosis of flywheel bearings based on wavelet package analysis[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition) , 2013, 23(1):43-46. | |
[9] | 陆文高, 苏振华, 齐晶 等. 基于小波变换的卫星故障诊断方法[J]. 国外电子测量技术, 2018, 37(2):30-33. |
LU Wengao, SU Zhenhua, QI Jing, et al. Method of satellite fault diagnosis based on wavelet translate[J]. Foreign Electronic Measurement Technology, 2018, 37(2):30-33. | |
[10] | BALDI P, BLANKE M, CASTALDI P, et al. Combined geometric and neural network approach to generic fault diagnosis in satellite reaction wheels[J]. IFAC-PapersOnline, 2015, 48(21):194-199. |
[11] | 龚学兵, 王日新, 徐敏强. 飞轮传感器的高斯混合模型故障检测方法[J]. 宇航学报, 2015, 36(6):699-705. |
GONG Xuebing, WANG Rixin, XU Minqiang. Gaussian mixed model-based fault detection method for flywheel sensor[J]. Journal of Astronautics, 2015, 36(6):699-705. | |
[12] | 王嘉轶, 闻新, 张婉怡. 卫星群反作用轮的故障诊断方法研究[J]. 中国空间科学技术, 2016, 36(4):24-32. |
WANG Jiayi, WEN Xin, ZHANG Wanyi. Fault diagnosis of reaction wheel in satellite formation[J]. Chinese Space Science and Technology, 2016, 36(4):24-32. | |
[13] |
MOUSAVI S, KHORASANI K. Fault detection of reaction wheels in attitude control subsystem of formation flying satellites: A dynamic neural network-based approach[J]. International Journal of Intelligent Unmanned Systems, 2014, 2(1):2-26.
doi: 10.1108/IJIUS-02-2013-0011 URL |
[14] | 王日新, 龚学兵, 徐敏强, 等. 飞轮系统的符号动力学故障检测方法[J]. 哈尔滨工业大学学报, 2016, 48(10):31-38. |
WANG Rixin, GONG Xuebing, XU Minqiang, et al. A symbolic dynamic analysis of flywheel system for fault detection[J]. Journal of Harbin Institute of Technology, 2016, 48(10):31-38. | |
[15] |
WANG R X, GONG X B, XU M Q, et al. Fault detection of flywheel system based on clustering and principal component analysis[J]. Chinese Journal of Aeronautics, 2015, 28(6):1676-1688.
doi: 10.1016/j.cja.2015.10.003 URL |
[16] | 李磊, 高永明, 吴止锾. 基于混沌吸引子的飞轮故障检测[J]. 北京航空航天大学学报, 2018, 44(9):1894-1902. |
LI Lei, GAO Yongming, WU Zhihuan. Fault detection for flywheels based on chaotic attractor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9):1894-1902. | |
[17] | 赵琳, 王艺鹏, 郝勇. 在轨飞轮故障诊断混合框架设计[J]. 光学精密仪器, 2018, 26(7):1728-1740. |
ZHAO Lin, WANG Yipeng, HAO Yong. Design of hybrid frame for on-orbit flywheel fault diagnosis[J]. Optics and Precision Engineering, 2018, 26(7):1728-1740. | |
[18] | BIALKE B. High fidelity mathematical modeling of reaction wheel performance[J]. Advances in the Astronautical Sciences, 1998, 98:483-496. |
[19] | TALBI H A, PATEL R V, KHORASANI K. Fault detection and isolation for uncertain nonlinear systems with application to a satellite reaction wheel actuator[C]// IEEE International Conference on Systems. Montreal, Canada: IEEE, 2007: 3140-3145. |
[20] | 刘翔. 卫星姿态控制系统故障模式分析与故障诊断研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
LIU Xiang. Study on fault mode analysis and fault diagnosis of satellite attitude control system[D]. Harbin: Harbin Institute of Technology, 2015. | |
[21] |
LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47.
doi: 10.1016/j.ymssp.2018.02.016 URL |
[22] | CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2016: 785-794. |
[23] |
IZADI V, ABEDI M, BOLANDI H. Supervisory algorithm based on reaction wheel modelling and spectrum analysis for detection and classification of electromechanical faults[J]. IET Science, Measurement & Technology, 2017, 11(8):1085-1093.
doi: 10.1049/smt2.v11.8 URL |
[1] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏). Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
[2] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军). Machine Learning-Based Approach to Liner Shipping Schedule Design [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
[3] | JIA Dao, CHEN Lei, ZHU Zhipeng, YU Yao, CHI Dejian. Application of Machine Learning in Fuze- Warhead System Design [J]. Air & Space Defense, 2022, 5(2): 27-31. |
[4] | WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an. Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348. |
[5] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[6] | ZHOU Yi, QIN Kangping, SUN Jinwen, FAN Dongqi, ZHENG Yiming. Real-Time Risk Evaluation Method of Power System Equipment and N-m Fault Contingency Plan Generation Under Typhoon Meteorological Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 22-30. |
[7] | LI Yuan, YAO Zongyu. Principal Polynomial Nonlinear Process Fault Detection Based on Neighborhood Preserving Embedding [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1001-1008. |
[8] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[9] | ZHU Song, QIAN Xiaochao, LU Yingbo, LIU Fei. An XGBoost-Based Effectiveness Prediction Method of Equipment System-of-Systems [J]. Air & Space Defense, 2021, 4(2): 1-. |
[10] | BAO Qinglin, CHAI Huaqi, ZHAO Songzheng, WANG Jilin. Model of Technology Opportunity Mining Using Machine Learning Algorithm and Its Application [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 705-717. |
[11] | LIU Mingguang, LIAO Yaxuan, LI Xiangshun . Data-Driven Fault Detection of Three-Tank System Applying MWAT-ICA [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 659-664. |
[12] | XU Qiaoning,AI Qinglin,DU Xuewen,LIU Yi. An Integrated Model-Based and Data-Driven Method for Early Fault Detection of a Ship Rudder Electro-Hydraulic Servo System [J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 451-464. |
[13] | HUANG Jian, YANG Xu. Online Weighted Slow Feature Analysis Based Fault Detection Algorithm [J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1142-1150. |
[14] | PENG Rui (彭锐), MA Xiaoyang *(马晓洋), ZHAI Qingqing (翟庆庆), GAO Kaiye (高凯烨). Software Reliability Growth Model Considering First-Step and Second-Step Fault Dependency [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 477-479. |
[15] | DAI Lan *(戴澜), YAN Qiangqiang (闫强强), YI Shengyu (易盛禹), LIU Wenkai (刘文楷), QIAN He (钱鹤). A Novel RRAM Based PUF for Anti-Machine Learning Attack and High Reliability [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 101-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||