[1] |
刘亮. 从“十三五”规划看电力转型发展[J]. 大众用电, 2019, 34(4):3-4.
|
|
LIU Liang. Power transformation and development based on the 13th five-year plan[J]. Popular Utilization of Electricity, 2019, 34(4):3-4.
|
[2] |
刘法钰, 张小英, 陈佳跃, 等. 螺旋管直流蒸汽发生器一、二次侧耦合传热特性分析[J]. 核动力工程, 2020, 41(5):24-29.
|
|
LIU Fayu, ZHANG Xiaoying, CHEN Jiayue, et al. Analysis of coupled flow and heat transfer in primary and secondary sides of helical coil once-through tube steam generator[J]. Nuclear Power Engineering, 2020, 41(5):24-29.
|
[3] |
樊雨轩, 张竞宇, 王晓东, 等. 压水堆核电厂蒸汽发生器传热管道破裂事故源项的计算分析[J]. 核技术, 2020, 43(6):31-36.
|
|
FAN Yuxuan, ZHANG Jingyu, WANG Xiaodong, et al. Calculation and analysis of steam generation tube rupture accident source term in PWR[J]. Nuclear Techniques, 2020, 43(6):31-36.
|
[4] |
杨元龙. 基于两流体模型的蒸汽发生器热工水力数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
|
|
YANG Yuanlong. Numerical investigation on thermal-hydraulic of steam generator based on two-fluid model[D]. Harbin: Harbin Engineering University, 2013.
|
[5] |
王弘扬, 阮神辉, 文青龙, 等. 基于多孔介质模型的快堆蒸汽发生器热工水力特性数值研究[J]. 核动力工程, 2019, 40(5):51-55.
|
|
WANG Hongyang, RUAN Shenhui, WEN Qing-long, et al. Numerical study of fast reactor steam generator based on porous media model[J]. Nuclear Power Engineering, 2019, 40(5):51-55.
|
[6] |
隋增光. 基于CFD的压水堆蒸汽发生器热工水力特性数值研究[D]. 武汉: 华中科技大学, 2019.
|
|
SUI Zengguang. Numerical investigation of the thermal-hydraulic characteristics of PWR steam generator based on CFD[D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
[7] |
薛阳, 冯建彪, 林静, 等. 蒸汽发生器水位的自适应模糊自抗扰控制[J]. 中国电力, 2014, 47(6):90-94.
|
|
XUE Yang, FENG Jianbiao, LIN Jing, et al. Steam generator water level control based on self-adaptive fuzzy-ADRC logic[J]. Electric Power, 2014, 47(6):90-94.
|
[8] |
刘建阁, 代涛, 张晓辉, 等. 小型自然循环蒸汽发生器水位控制特性分析[J]. 舰船科学技术, 2019, 41(19):108-113.
|
|
LIU Jiange, DAI Tao, ZHANG Xiaohui, et al. Water level control characteristic analysis for the small natural circulation steam generator[J]. Ship Science and Technology, 2019, 41(19):108-113.
|
[9] |
姜頔, 刘向杰, 孔小兵. 核电站蒸汽发生器水位的软约束预测控制[J]. 自动化学报, 2019, 45(6):1111-1121.
|
|
JIANG Di, LIU Xiangjie, KONG Xiaobing. Soft constrained MPC on water level control in steam generator of a nuclear power plant[J]. Acta Automatica Sinica, 2019, 45(6):1111-1121.
|
[10] |
孙宝芝, 郑陆松, 韩文静, 等. 基于流固耦合的蒸汽发生器换热管结构应力分析[J]. 化工学报, 2014, 65(Sup.1):364-370.
|
|
SUN Baozhi, ZHENG Lusong, HAN Wenjing, et al. Analysis on structural stress of tube in steam generator based on fluid-structure interaction[J]. CIESC Journal, 2014, 65(Sup.1):364-370.
|
[11] |
钱虹, 江诚, 潘岳凯, 等. 基于时间序列神经网络的蒸汽发生器传热管泄漏程度诊断研究[J]. 核动力工程, 2020, 41(2):160-167.
|
|
QIAN Hong, JIANG Cheng, PAN Yuekai, et al. Diagnosis of leakage degree of steam generator tube based on time series neural network[J]. Nuclear Power Engineering, 2020, 41(2):160-167.
|
[12] |
魏志伟, 王明春, 张雨飞, 等. 蒸汽发生器非线性机理模型与动态特性分析[J]. 发电设备, 2018, 32(4):261-267.
|
|
WEI Zhiwei, WANG Mingchun, ZHANG Yufei, et al. Nonlinear mechanism model and dynamic characteristic analysis of a steam generator[J]. Power Equipment, 2018, 32(4):261-267.
|
[13] |
刘勇, 徐海斌, 陈林, 等. 大型钠冷快堆核电站蒸汽发生器仿真模型开发与分析[J]. 中国仪器仪表, 2019(5):71-75.
|
|
LIU Yong, XU Haibin, CHEN Lin, et al. Development and analysis of large sodium-cooled fast reactor nuclear power plant steam generator simulation model[J]. China Instrumentation, 2019(5):71-75.
|
[14] |
郭丹, 夏虹, 杨波. 自然循环蒸汽发生器动态水位建模与控制[J]. 哈尔滨工程大学学报, 2018, 39(9):1485-1490.
|
|
GUO Dan, XIA Hong, YANG Bo. Modeling and control on dynamic water level of steam generator with natural circulation[J]. Journal of Harbin Engineering University, 2018, 39(9):1485-1490.
|
[15] |
邹海, 李良, 郑伟, 等. 立式自然循环蒸汽发生器机理建模与仿真研究[J]. 舰船科学技术, 2017, 39(5):113-117.
|
|
ZOU Hai, LI Liang, ZHENG Wei, et al. Study of mechanism modeling and simulation of natural circulation steam generator[J]. Ship Science and Technology, 2017, 39(5):113-117.
|
[16] |
MOKRY S, PIORO I, KIRILLOV P, et al. Supercritical-water heat transfer in a vertical bare tube[J]. Nuclear Engineering and Design, 2010, 240(3):568-576.
doi: 10.1016/j.nucengdes.2009.09.003
URL
|
[17] |
QIU Y, LI M J, WANG W Q, et al. An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power[J]. Energy, 2018, 156:63-72.
doi: 10.1016/j.energy.2018.05.040
URL
|
[18] |
LIU Y, DINH N T, SMITH R C, et al. Uncertainty quantification of two-phase flow and boiling heat transfer simulations through a data-driven modular Bayesian approach[J]. International Journal of Heat and Mass Transfer, 2019, 138:1096-1116.
doi: 10.1016/j.ijheatmasstransfer.2019.04.075
URL
|
[19] |
ZHANG K, HOU Y D, TIAN W X, et al. Experimental investigations on single-phase convection and two-phase flow boiling heat transfer in an inclined rod bundle[J]. Applied Thermal Engineering, 2019, 148:340-351.
doi: 10.1016/j.applthermaleng.2018.11.067
URL
|