[1] |
MA J A, CAHARD D. Towards perfect catalytic asymmetric synthesis: Dual activation of the electrophile and the nucleophile[J]. Angewandte Chemie International Edition, 2004, 43(35): 4566-4583.
|
[2] |
LIST B, LERNER R A, BARBAS C F. Proline-catalyzed direct asymmetric aldol reactions[J]. Journal of the American Chemical Society, 2000, 122(10): 2395-2396.
|
[3] |
KAMER P C J, VOGT D, THYBAUT J W. Contemporary catalysis: Science, technology, and applications[M]. London, UK: Royal Society of Chemistry, 2017.
|
[4] |
OLIVEIRA V, CARDOSO M, FOREZI L. Organocatalysis: A brief overview on its evolution and applications[J]. Catalysts, 2018, 8(12): 605.
|
[5] |
VOGEL P, LAM Y, SIMON A, et al. Organocatalysis: Fundamentals and comparisons to metal and enzyme catalysis[J]. Catalysts, 2016, 6(9): 128.
|
[6] |
VAN DER HELM M P, KLEMM B, EELKEMA R. Organocatalysis in aqueous media[J]. Nature Reviews Chemistry, 2019, 3(8): 491-508.
|
[7] |
KRIŠTOFÍKOVÁ D, MODROCKÁ V, MEACǦIAROVÁ M, et al. Green asymmetric organocatalysis[J]. ChemSusChem, 2020, 13(11): 2828-2858.
|
[8] |
DOYLE A G, JACOBSEN E N. Small-molecule H-bond donors in asymmetric catalysis[J]. Chemical Reviews, 2007, 107(12): 5713-5743.
|
[9] |
HELD F E, TSOGOEVA S B. Asymmetric cycloaddition reactions catalyzed by bifunctional thiourea and squaramide organocatalysts: Recent advances[J]. Catalysis Science & Technology, 2016, 6(3): 645-667.
|
[10] |
STEPPELER F, IWAN D, WOJACZYNSKA E, et al. Chiral thioureas—Preparation and significance in asymmetric synthesis and medicinal chemistry[J]. Molecules, 2020, 25(2): 401.
|
[11] |
SIAU W Y, WANG J. Asymmetric organocatalytic reactions by bifunctional amine-thioureas[J]. Catalysis Science & Technology, 2011, 1(8): 1298-1310.
|
[12] |
SERDYUK O V, HECKEL C M, TSOGOEVA S B. Bifunctional primary amine-thioureas in asymmetric organocatalysis[J]. Organic & Biomolecular Chemistry, 2013, 11(41): 7051-7071.
|
[13] |
TSOGOEVA S B, WEI S W. Highly enantioselective addition of ketones to nitroolefins catalyzed by new thiourea-amine bifunctional organocatalysts[J]. Chemical Communications (Cambridge, England), 2006(13): 1451-1453.
|
[14] |
HUANG H B, JACOBSEN E N. Highly enantioselective direct conjugate addition of ketones to nitroalkenes promoted by a chiral primary amine-thiourea catalyst[J]. Journal of the American Chemical Society, 2006, 128(22): 7170-7171.
|
[15] |
LIU K, CUI H F, NIE J, et al. Highly enantioselective Michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharides[J]. Organic Letters, 2007, 9(5): 923-925.
|
[16] |
JIANG X X, ZHANG Y F, CHAN A S C, et al. Highly enantioselective synthesis of γ-nitro heteroaromatic ketones in a doubly stereocontrolled manner catalyzed by bifunctional thiourea catalysts based on dehydroabietic amine: A doubly stereocontrolled approach to pyrrolidine carboxylic acids[J]. Organic Letters, 2009, 11(1): 153-156.
|
[17] |
GALZERANO P, BENCIVENNI G, PESCIAIOLI F, et al. Asymmetric iminium ion catalysis with a novel bifunctional primary amine thiourea: Controlling adjacent quaternary and tertiary stereocenters[J]. Chemistry—A European Journal, 2009, 15(32): 7846-7849.
|
[18] |
PARK Y, KIM Y, CHANG S. Transition metal-catalyzed C-H amination: Scope, mechanism, and applications[J]. Chemical Reviews, 2017, 117(13): 9247-9301.
|
[19] |
BAI H Y, MA Z G, YI M, et al. Palladium-catalyzed direct intermolecular amination of unactivated methylene C(sp3)-H bonds with azodiformates via bidentate-chelation assistance[J]. ACS Catalysis, 2017, 7(3): 2042-2046.
|
[20] |
BAI H Y, FU X, PAN J L, et al. Transition metal-controlled direct regioselective intermolecular amidation of C-H bonds with azodicarboxylates: Scope, mechanistic studies, and applications[J]. Advanced Synthesis & Catalysis, 2018, 360(21): 4205-4214.
|
[21] |
FU X, BAI H Y, ZHU G D, et al. Metal-controlled, regioselective, direct intermolecular α- or γ-amination with azodicarboxylates[J]. Organic Letters, 2018, 20(12): 3469-3472.
|
[22] |
LI Q Z, WANG X H, HOU S H, et al. Silver-catalyzed para-selective C-H amination of 1-naphthylamides with azodicarboxylates at room temperature[J]. Synthesis, 2019, 51(13): 2697-2704.
|
[23] |
BAI H Y, TAN F X, LIU T Q, et al. Highly atroposelective synthesis of nonbiaryl naphthalene-1, 2-diamine N-C atropisomers through direct enantioselective C-H amination[J]. Nature Communications, 2019, 10(1): 1-9.
|
[24] |
ALONSO D A, BAEZA A, CHINCHILLA R, et al. Recent advances in asymmetric organocatalyzed conjugate additions to nitroalkenes[J]. Molecules, 2017, 22(6): 895.
|
[25] |
GUO X T, SHA F, WU X Y. Highly enantioselective Michael addition of α,α-disubstituted aldehydes to nitroolefins[J]. Research on Chemical Intermediates, 2016, 42(7): 6373-6380.
|
[26] |
CRUZ H, SERVÍN F A, MADRIGAL D, et al. C2-symmetric sulfonamides as homogeneous and heterogeneous organocatalysts that mimic enzymes in enantioselective Michael additions[J]. Chirality, 2018, 30(8): 1036-1044.
|
[27] |
DE SIMONE N A, MENINNO S, TALOTTA C, et al. Solvent-free enantioselective Michael reactions catalyzed by a calixarene-based primary amine thiourea[J]. Journal of Organic Chemistry, 2018, 83(17): 10318-10325.
|