[1] |
刘延柱, 潘振宽, 戈新生. 多体系统动力学[M]. 北京: 高等教育出版社, 2014.
|
|
LIU Yanzhu, PAN Zhenkuan, GE Xinsheng. Dynamics of multibody systems[M]. Beijing: Higher Education Press, 2014.
|
[2] |
洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 1999.
|
|
HONG Jiazhen. Computational dynamics of multibody systems[M]. Beijing: Higher Education Press, 1999.
|
[3] |
洪嘉振, 刘铸永. 刚柔耦合动力学的建模方法[J]. 上海交通大学学报, 2008, 42(11): 1922-1926.
|
|
HONG Jiazhen, LIU Zhuyong. Modeling methods of rigid-flexible coupling dynamics[J]. Journal of Shanghai Jiao Tong University, 2008, 42(11): 1922-1926.
|
[4] |
王铁成, 陈国平, 孙东阳. 基于绝对节点坐标法的柔性多体系统灵敏度分析[J]. 振动与冲击, 2015, 34(24): 89-92.
|
|
WANG Tiecheng, CHEN Guoping, SUN Dongyang. Sensitivity analysis of flexible multibody systems based on absolute nodal coordinate formulation[J]. Journal of Vibration and Shock, 2015, 34(24): 89-92.
|
[5] |
CHO H J, BAE D S, CHOI J H, et al. An efficient general purpose contact search algorithm using the relative coordinate system for multibody system dynamics[J]. Solid State Phenomena, 2007, 120: 129-134.
|
[6] |
杜晓旭, 崔航, 向祯晖. 基于Kane方法的波浪驱动水下航行器动力学模型建立[J]. 兵工学报, 2016, 37(7): 1236-1244.
|
|
DU Xiaoxu, CUI Hang, XIANG Zhenhui. The multi-body system dynamics modeling of wave-driven underwater vehicle based on Kane method[J]. Acta Armamentarii, 2016, 37(7): 1236-1244.
|
[7] |
SUZUKI T, CHO H J, RYU H S. A recursive implementation method with implicit integrator for multibody dynamics[J]. The Proceedings of the Asian Conference on Multibody Dynamics, 2002, 2002: 600-601.
|
[8] |
盛立伟, 刘锦阳, 余征跃. 柔性多体系统弹性碰撞动力学建模[J]. 上海交通大学学报, 2006, 40(10): 1790-1793.
|
|
SHENG Liwei, LIU Jinyang, YU Zhengyue. Dynamic modeling of a flexible multibody system with elastic impact[J]. Journal of Shanghai Jiao Tong University, 2006, 40(10): 1790-1793.
|
[9] |
OMAR M. Multibody dynamics formulation for modeling and simulation of roller chain using spatial operator[J]. MATEC Web of Conferences, 2016, 51: 01003.
|
[10] |
GONZLEZ F, DOPICO D, PASTORINO R, et al. Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations[J]. Nonlinear Dynamics, 2016, 85(3): 1491-1508.
|
[11] |
NEGRUT D, RAMPALLI R, OTTARSSON G, et al. On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096)[J]. Journal of Computational and Nonlinear Dynamics, 2007, 2(1): 73-85.
|
[12] |
NEGRUT D, JAY L O, KHUDE N. A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics[J]. Journal of Computational and Nonlinear Dynamics, 2007, 4(2): 021008.
|
[13] |
JAY O L, NEGRUT D. A second order extension of the generalized-α method for constrained systems in mechanics[M]. Multibody dynamics. Dordrecht: Springer Netherlands, 2009: 143-158.
|
[14] |
LUNK C, SIMEON B. Solving constrained mechanical systems by the family of Newmark and α-methods[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2006, 86(10): 772-784.
|
[15] |
SHABANA A A, HUSSEIN B A. A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems[J]. Journal of Sound and Vibration, 2009, 327(3/4/5): 557-563.
|
[16] |
马秀腾, 翟彦博, 罗书强. 基于θ1方法的多体动力学数值算法研究[J]. 力学学报, 2011, 43(5): 931-938.
|
|
MA Xiuteng, ZHAI Yanbo, LUO Shuqiang. Numerical method of multibody dynamics based on θ1 method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 931-938.
|
[17] |
马秀腾, 翟彦博, 谢守勇. 多体系统动力学指标-2超定运动方程HHT积分改进方法[J]. 中国科学: 技术科学, 2018, 48(2): 229-236.
|
|
MA Xiuteng, ZHAI Yanbo, XIE Shouyong. Improved HHT integration method for index-2 over-determined equations of motion in multibody system dynamics[J]. Scientia Sinica (Technologica), 2018, 48(2): 229-236.
|
[18] |
郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor-α法在接触约束多体系统动力学中的应用[J]. 物理学报, 2017, 66(16): 147-157.
|
|
GUO Xian, ZHANG Dingguo, CHEN Sijia. Application of Hilber-Hughes-Taylor-α method to dynamics of flexible multibody system with contact and constraint[J]. Acta Physica Sinica, 2017, 66(16): 147-157.
|
[19] |
姚廷强, 黄亚宇, 王立华. 圆柱滚子轴承多体接触动力学研究[J]. 振动与冲击, 2015, 34(7): 15-23.
|
|
YAO Tingqiang, HUANG Yayu, WANG Lihua. Multibody contact dynamics for cylindrical roller bearing[J]. Journal of Vibration and Shock, 2015, 34(7): 15-23.
|
[20] |
丁洁玉, 潘振宽. 多体系统动力学微分-代数方程广义-α投影法[J]. 工程力学, 2013, 30(4): 380-384.
|
|
DING Jieyu, PAN Zhenkuan. Generalized-α projection method for differentialalgebraic equations of multibody dynamics[J]. Engineering Mechanics, 2013, 30(4): 380-384.
|
[21] |
刘颖, 马建敏. 多体系统动力学方程的基于离散零空间理论的Newmark积分算法[J]. 机械工程学报, 2012, 48(5): 87-91.
|
|
LIU Ying, MA Jianmin. Discrete null space method for the newmark integration of multibody dynamic systems[J]. Journal of Mechanical Engineering, 2012, 48(5): 87-91.
|
[22] |
BATHE K J, BAIG M M I. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers & Structures, 2005, 83(31/32): 2513-2524.
|
[23] |
BATHE K J. Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme[J]. Computers & Structures, 2007, 85(7/8): 437-445.
|
[24] |
陈光宋. 弹炮耦合系统动力学及关键参数识别研究[D]. 南京: 南京理工大学, 2016.
|
|
CHEN Guangsong. The study on the dynamic of the projectile-barrel coupled system and the corresponding key parameters[D]. Nanjing: Nanjing University of Science and Technology, 2016.
|
[25] |
BAUMGARTE J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 1972, 1(1): 1-16.
|
[26] |
KIM J K, CHUNG I S, LEE B H. Determination of the feedback coefficients for the constraint violation stabilization method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, 1990, 204(4): 233-242.
|
[27] |
HERTZ H. On the contact of rigid elastic solids and on hardness [M]. London: Macmillan, 1896: 146-183.
|