Journal of Shanghai Jiaotong University ›› 2020, Vol. 54 ›› Issue (10): 1015-1023.doi: 10.16183/j.cnki.jsjtu.2019.108
Previous Articles Next Articles
LI Wenchen,CAI Yifan,YAN Taisen,LI Tingxian,WANG Ruzhu
Received:
2019-04-16
Online:
2020-10-28
Published:
2020-11-09
CLC Number:
LI Wenchen, CAI Yifan, YAN Taisen, LI Tingxian, WANG Ruzhu. Preparation and Thermal Storage Properties of Sodium Acetate Trihydrate-Expanded Graphite as Phase Change Composite[J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1015-1023.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.108
[1] | 王晓霖, 翟晓强, 王恬, 等. 高温供冷相变蓄冷材料的制备及蓄冷性能[J]. 上海交通大学学报, 2013, 47(8): 1275-1281. |
WANG Xiaolin, ZHAI Xiaoqiang, WANG tian, et al. Preparation and performance of cold storage phase change material for high temperature cooling application[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1275-1281. | |
[2] | CHEN Y F, WU X J, YUE S T, et al. Ethylene-propylene terpolymer-modified polyethylene-based phase change material with enhanced mechanical and thermal properties for building application[J]. Industrial and Engineering Chemistry Research, 2019, 58(1): 179-186. |
[3] | ZHANG D, CHEN M, LIU Q, et al. Preparation and thermal properties of molecular-bridged expanded graphite/polyethylene glycol composite phase change materials for building energy conservation[J]. Materials, 2018, 11(5): 818-833. |
[4] | YE R D, LIN W Z, YUAN K J, et al. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Energy, 2017, 193: 325-335. |
[5] | ABOKERSH M H, OSMAN M, EL-BAZ O, et al. Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS)[J]. International Journal of Energy Research, 2018, 42(2): 329-357. |
[6] | XU B, ZHOU J, NI Z J, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94. |
[7] | HEREZ A, RAMADAN M, KHALED M. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 421-432. |
[8] | QIAN T T, ZHU S K, WANG H L, et al. Compa-rative study of single-walled carbon nanotube and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase change material composites[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(2): 2446-2458. |
[9] | HUANG X, LIN Y X, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76. |
[10] | BERTRAND A, AGGOUNE R, MAREVHAL F O. In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs[J]. Applied Energy, 2017, 192: 110-125. |
[11] | XIA M Z, YUAN Y P, ZHAO X D, et al. Cold storage condensation heat recovery system with a novel composite phase change material[J]. Applied Energy, 2016, 175: 259-268. |
[12] | JIA J, LEE W L. Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner[J]. Energy, 2015, 93: 1394-1403. |
[13] | SHAID A, WANG L J, ISLAM S, et al. Preparation of aerogel-eicosane microparticles for thermore-gulatory coating on textile[J]. Applied Thermal Engineering, 2016, 107: 602-611. |
[14] | KAZEMI Z, MORTAZAVI S M. A new method of application of hydrated salts on textiles to achieve thermoregulating properties[J]. Thermochimica Acta, 2014, 589(10): 56-62. |
[15] | LV Y F, SITU W F, YANG X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for ba-ttery thermal management[J]. Energy Conversion and Management, 2018, 163: 250-259. |
[16] | WU W X, WU W, WANG S F. Thermal management optimization of a prismatic battery with shape-stabilized phase change material[J]. International Journal of Heat and Mass Transfer, 2018, 121: 967-977. |
[17] | PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. |
[18] | 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632. |
MENG Lingran, GUO Lijiang, LI Xiaoyu, et al. Salt hydrate based phase change materials for thermal energy storage: A review[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632. | |
[19] | KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286. |
[20] | OR E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
[21] | 吴东灵, 李廷贤, 何峰, 等. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69(7): 2860-2868. |
WU Dongling, LI Tingxian, HE Feng, et al. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage[J]. CIESC Journal, 2018, 69(7): 2860-2868. | |
[22] | GU X B, QIN S, WU X, et al. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(2): 831-838. |
[23] | KENISARIN M, MAHKAMOV K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs[J]. Solar Energy Materials and Solar Cells, 2016, 145: 255-286. |
[24] | KREITH F, BOHN M, KIRKPATRICK A. Principles of heat transfer[J]. Journal of Solar Energy Engineering, 1997, 119(2): 187. |
[25] | YUAN K J, ZHOU Y, SUN W C, et al. A polymer-coated calcium chloride hexahydrate/expanded graphite composite phase change material with enhanced thermal reliability and good applicability[J]. Compo-sites Science and Technology, 2018, 156: 78-86. |
[26] | LING Z Y, LI S M, ZHANG Z G, et al. A shape-stabilized MgCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composite phase change material with high thermal conductivity and stability[J]. Journal of Applied Electrochemistry, 2018, 48(10): 1131-1138. |
[27] | HOU P M, MAO J F, CHEN F, et al. Preparation and thermal performance enhancement of low tempe-rature eutectic composite phase change materials based on Na2SO4·10H2O[J]. Materials, 2018, 11(11): 2230-2245. |
[28] | MAO J F, HOU P M, LIU R R, et al. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material[J]. Applied Thermal Engineering, 2017, 119: 585-592. |
[29] | FU W W, ZOU T, LIANG X H, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate-urea/expanded graphite for radiant floor heating system[J]. Applied Thermal Engineering, 2018, 138: 618-626. |
[30] | GAWRON K, SCHRDER J. Properties of some salt hydrates for latent heat storage[J]. International Journal of Energy Research, 2010, 1(4): 351-363. |
[31] | WANG Y, YU K X, PENG H, et al. Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage[J]. Energy, 2019, 167: 269-274. |
[32] | KONG W Q, DANNEMAND M, JOHANSEN J B, et al. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method[J]. Solar Energy, 2016, 139: 249-257. |
[33] | MAO J F, LI J T, LI J, et al. A selection and optimization experimental study of additives to thermal energy storage material sodium acetate trihydrate[C]∥2009 International Conference on Energy and Environment Technology, Guilin, Guangxi: IEEE, 2009: 14-17. |
[34] | SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51: 365-372. |
[35] | ZHANG Y, ANIM-DANSO E, DHINOJWALA A. The effect of a solid surface on the segregation and melting of salt hydrates[J]. Journal of the American Chemical Society, 2014, 136(42): 14811-14820. |
[1] | ZHANG Guang (张光), LI Yong (李勇). Performance Evaluation of Short Parabolic Trough Collectors Integrated with a Small-Scale Solar Power and Heating System [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 41-49. |
[2] | ZHAO Shuaishuaia (赵帅帅), SHAO Chenga (邵成), ZAHIRI Saeida,ZHAO Changyingb (赵长颖), BAO Huaa* (鲍华). Thermal Transport in Nanoporous Yttria-Stabilized Zirconia by Molecular Dynamics Simulation [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(1): 38-44. |
[3] | YANG Xixiang. Analysis of Trajectory and Thermal Performance during Descent Stage of High Altitude Scientific Balloons [J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 608-612. |
[4] | WANG Jing,KONG Weiliang,WANG Fuxin,LIU Hong. Experimental Study of Surface Energy on Growth of Icing in Supercooled Water [J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 588-584. |
[5] | REN Xiao-Jun-1, ZHANG Peng-1, WANG Xiao-Jun-2, PAN Yan-Pin-2. Permeability, Thermal Conductivity and the Pore Characters of Sintered Porous Metal Materials [J]. Journal of Shanghai Jiaotong University, 2013, 47(03): 352-357. |
[6] | JING Yu-hanga,b* (荆宇航), YU Kai-pinga (于开平), QIN Xiana (覃弦), SHEN Junb* (沈军). Composition-Dependent Mechanical and Thermal Transport Properties of Carbon/Silicon Core/Shell Nanowires [J]. Journal of shanghai Jiaotong University (Science), 2012, 17(6): 743-747. |
[7] | HUANG Hou-Xue, LIU Zhen-Yu, CHEN Ya-Qi, WU Hui-Ying. Thermal Analysis of Solar Panels in Orbit under Different Operating Conditions [J]. Journal of Shanghai Jiaotong University, 2012, 46(05): 790-795. |
[8] | JIN Zhe-Quan, TIAN Bo, WANG Li-Wei, WANG Ru-Zhu. Study on Thermal Conductivities and Permeabilities of AC/ENG Consolidated Composite Adsorbents [J]. Journal of Shanghai Jiaotong University, 2011, 45(06): 866-869. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||