[1] |
RICHARD J P. Time-delay systems: An overview of some recent advances and open problems[J]. Automatica, 2003,39(10):1667-1694.
|
[2] |
HIEN L V, TRINH H. An enhanced stability criterion for time-delay systems via a new bounding technique[J]. Journal of the Franklin Institute, 2015,352(10):4407-4422.
|
[3] |
ZENG H B, HE Y, WU M, et al. Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J]. IEEE Transactions on Automatic Control, 2015,60(10):2768-2772.
|
[4] |
ZENG H B, HE Y, WU M, et al. New results on stability analysis for systems with discrete distributed delay[J]. Automatica, 2015,60:189-192.
|
[5] |
PARK P, LEE W I, LEE S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems[J]. Journal of the Franklin Institute, 2015,352(4):1378-1396.
|
[6] |
CHENG J, WANG H L, CHEN S Q, et al. Robust delay-derivative-dependent state-feedback control for a class of continuous-time system with time-varying delays[J]. Neurocomputing, 2016,173:827-834.
|
[7] |
XU H T, ZHANG C K, JIANG L, et al. Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional[J]. Applied Mathematical Modelling, 2017,45:955-964.
|
[8] |
SHAO H Y, ZHANG Z Q. Delay-dependent state feedback stabilization for a networked control model with two additive input delays[J]. Applied Mathematics and Computation, 2015,265:748-758.
|
[9] |
HUI J J, KONG X Y, ZHANG H X, et al. Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations[J]. Journal of Computational and Applied Mathematics, 2015,281:74-81.
|
[10] |
ZHANG Z Y, LIN C, CHEN B. Complete LKF approach to stabilization for linear systems with time-varying input delay[J]. Journal of the Franklin Institute, 2015,352(6):2425-2440.
|
[11] |
DING L M, HE Y, WU M, et al. Improved mixed-delay-dependent asymptotic stability criteria for neutral systems[J]. IET Control Theory and Applications, 2015,9(14):2180-2187.
|
[12] |
张涛, 邵诚, 崔艳秋. 区间时变时滞系统的时滞相关稳定性分析[J]. 电光与控制, 2015,22(1):45-47.
|
|
ZHANG Tao, SHAO Cheng, CUI Yanqiu. Research on delay-dependent stability for systems with interval time-varying delay[J]. Electronics Optics & Control, 2015,22(1):45-47.
|
[13] |
DAI L Y. Singular control systems[M]. Berlin/Heidelberg: Springer-Verlag, 1989.
|
[14] |
XU S Y, VAN DOOREN P, STEFAN R, et al. Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J]. IEEE Transactions on Automatic Control, 2002,47(7):1122-1128.
|
[15] |
DING Y C, ZHONG S M, CHEN W F. A delay-range-dependent uniformly asymptotic stability criterion for a class of nonlinear singular systems[J]. Nonlinear Analysis: Real World Applications, 2011,12(2):1152-1162.
|
[16] |
JIAO J M. Delay-dependent stability criteria for singular systems with interval time-varying delay[J]. Mathematical Problems in Engineering, 2012,2012:1-16.
|
[17] |
龚冠桦, 赵南, 刘臻臻, 等. 基于Park积分不等式线性时滞广义系统稳定性分析[J]. 青岛大学学报(工程技术版), 2017,32(2):17-21.
|
|
GONG Guanhua, ZHAO Nan, LIU Zhenzhen, et al. New stability analysis of linear singular systems with time delays based on park’s integral inequality[J]. Journal of Qingdao University (Engineering & Technology Edition), 2017,32(2):17-21.
|
[18] |
马跃超, 张雨桐, 付磊. 奇异时滞系统的量化容错控制[J]. 郑州大学学报(理学版), 2019,51(4):110-115.
|
|
MA Yuechao, ZHANG Yutong, FU Lei. Quantized and fault-tolerant control for singular time-delay systems[J]. Journal of Zhengzhou University (Natural Science Edition), 2019,51(4):110-115.
|
[19] |
PARK M, KWON O, PARK J H, et al. Stability of time-delay systems via Wirtinger-based double integral inequality[J]. Automatica, 2015,55:204-208.
|
[20] |
李郅辰. 基于积分不等式的时滞系统稳定性分析和控制[D]. 北京: 华北电力大学, 2017.
|
|
LI Zhichen. Stability analysis and control for time-delay systems based on integral inequalities[D]. Beijing: North China Electric Power University, 2017.
|