Journal of Shanghai Jiaotong University ›› 2020, Vol. 54 ›› Issue (6): 584-591.doi: 10.16183/j.cnki.jsjtu.2019.062
Previous Articles Next Articles
XIA Li a,ZOU Zaojian a,b,YUAN Shuai a,ZENG Zhihua a
Online:
2020-06-28
Published:
2020-07-03
CLC Number:
XIA Li, ZOU Zaojian, YUAN Shuai, ZENG Zhihua. Uncertainty Quantification for CFD Simulation of Stochastic Drag Flow Based on Non-Intrusive Polynomial Chaos Method[J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 584-591.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.062
[1]MARCELLO A, SPINELLA S, RINAUDO S. Stochastic response surface method and tolerance analysis in microelectronics[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(2): 314-327. [2]WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897-936. [3]GHANEM R G, SPANOS P D. Stochastic finite elements: A spectral approach[M]. New York: Springer-Verlag, 1991: 113-185. [4]XIU D, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. [5]XIU D, KARNIADAKIS G E. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(43): 4927-4948. [6]XIU D, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137-167. [7]LOEVEN G J A, WITTEVEEN J A S, BIJL H. Probabilistic collocation: An efficient non-intrusive approach for arbitrarily distributed parametric uncertainties[C]∥Proceedings of 45th Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2007: No.2007-317. [8]LOEVEN G J A. Efficient uncertainty quantification in computational fluid dynamics[D]. Delft: Delft University of Technology, 2010. [9]MARGHERI L, SAGAUT P. A hybrid anchored-ANOVA-POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations[J]. Journal of Computational Physics, 2016, 324: 137-173. [10]MATHELIN L, HUSSAINI M Y. Uncertainty quantification in CFD simulations: A stochastic spectral approach[M]. ARMFIELD S W, MORGAN P, SRINIVAS K. Computational Fluid Dynamics 2002. Berlin: Springer, 2003: 65-70. [11]MATHELIN L, HUSSAINI M Y, ZANG T A. Stochastic approaches to uncertainty quantification in CFD simulations[J]. Numerical Algorithms, 2005, 38(1-3): 209-236. [12]LACOR C, DINESCU C, HIRSCH C, et al. Implementation of intrusive polynomial chaos in CFD codes and application to 3D Navier-Stokes[M]. BIJL H, LUCOR D, MISHRA S, et al. Uncertainty Quantification in Computational Fluid Dynamics. Heidelberg: Springer, 2013: 193-223. [13]HOSDER S, WALTERS R, PEREZ R. A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[C]∥Proceedings of 44th Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2006: No.2006-891. [14]HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]∥Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Honolulu, Hawaii, USA: AIAA, 2007: No.2007-1939. [15]HOSDER S, WALTERS R. Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics[C]∥Proceedings of 48th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Honolulu, Hawaii, USA: AIAA, 2010: No.2010-129. [16]SALEHI S, RAISEE M, CERVANTES M J, et al. Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing[J]. Computers & Fluids, 2017, 154: 296-321. [17]SALEHI S, RAISEE M, CERVANTES M J, et al. The effects of inflow uncertainties on the characteristics of developing turbulent flow in rectangular pipe and asymmetric diffuser[J]. Journal of Fluids Engineering, 2017, 139(4): 041402. [18]WANG X D, KANG S. Application of polynomial chaos on numerical simulation of stochastic cavity flow[J]. Science China Technological Sciences, 2010, 53(10): 2853-2861. [19]HE W, DIEZ M, CAMPANA E F, et al. A one-dimensional polynomial chaos method in CFD-based uncertainty quantification for ship hydrodynamic performance[J]. Journal of Hydrodynamics, 2013, 25(5): 655-662. [20]DIEZ M, HE W, CAMPANA E F, et al. Uncertainty quantification of Delft catamaran resistance, sinkage and trim for variable Froude number and geometry using metamodels, quadrature and Karhunen-Loève expansion[J]. Journal of Marine Science and Technology, 2014, 19(2): 143-169. [21]STERN F, VOLPI S, GAUL N J, et al. Development and assessment of uncertainty quantification methods for ship hydrodynamics[C]∥Proceedings of 55th Aerospace Sciences Meeting. Grapevine, Texas, USA: AIAA, 2017: No.2017-1654. [22]毕超. 计算流体力学有限元方法及其编程详解[M]. 北京: 机械工业出版社, 2013: 37-72. BI Chao. Finite element method in computational fluid dynamics and its detailed programming[M]. Beijing: China Machine Press, 2013: 37-72. [23]CELIK I B, GHIA U, ROACHE P J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 0780011-0780014. |
[1] | WANG Zhiwei, HE Yanping, LI Mingzhi, QIU Ming, HUANG Chao, LIU Yadong. Numerical Simulation and Flow Pattern Evolution of Gas-Liquid Two-Phase Flow Passing Through a 90° Pipe Bend Based on CFD [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1159-1167. |
[2] | SONG Shenke, XIA Li, ZOU Zaojian, ZOU Lu. A Numerical Study of Hydrodynamic Interactions Between a Large Cruise Ship and a Container Ship [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 919-928. |
[3] | SUN Jian, PENG Bin, ZHU Bingguo. Numerical Simulation and Experimental Study of Oil-Free Double-Warp Air Scroll Compressor [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 611-621. |
[4] | CHEN Zhixin, WANG Yiping, YANG Yafeng, SU Jianjun, YANG Bin. Characteristics of Droplet Transmission in Buses in Different Air Supply Modes [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1532-1540. |
[5] | ZHANG Juntao, LIU Xiaojing, ZHANG Tengfei, CHAI Xiang. Uncertainty Quantitative Analysis of Subchannel Code Calculation of PSBT Void Distribution Benchmark [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1420-1426. |
[6] | YANG Mengyao, MAO Lulu, HAN Zhaolong, ZHOU Dai, LEI Hang, CAO Yu. Wind Vibration and Vibration Reduction of a H-Rotor Type Three-Bladed Vertical Axis Wind Turbine [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 347-356. |
[7] | ZHANG Yu, WANG Xiaoliang. Simulation on Aeroelasticity of Flexible Propellers Based onRadial Point Interpolation Method [J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 924-934. |
[8] | ZHUANG Haowan, TENG Jinfang, ZHU Mingmin, QIANG Xiaoqing. Impacts of Blades Considering Manufacturing Tolerances on Aerodynamic Performance of Compressor [J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 935-942. |
[9] | XU Ye, XIONG Ying, HUANG Zheng. Test and Numerical Study of Propeller Cavitation Induced Fluctuating Pressure of Twin-Propeller Ship [J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 831-838. |
[10] | GUO Jun,CHEN Zuogang,DAI Yuanxing,CHEN Jianping. Research and Application of the Capture Area Obtaining Method for Waterjet [J]. Journal of Shanghai Jiaotong University, 2020, 54(1): 1-9. |
[11] | . Analysis of Wind Load on Semi-submersible Drilling Platform and the Key Influence Factor [J]. Ocean Engineering Equipment and Technology, 2019, 6(3): 548-. |
[12] | LUO Yang (罗扬), PAN Guang* (潘光), HUANG Qiaogao (黄桥高), SHI Yao (施瑶), LAI Hui (赖慧). Parametric Geometric Model and Shape Optimization of Airfoils of a Biomimetic Manta Ray Underwater Vehicle [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 402-408. |
[13] | YU Cheng (郁程), DONG Xiaoqian (董小倩), YANG Chenjun (杨晨俊), LI Wei (李巍), NOBLESSE Francis. Effects of Blade Loading Distribution on the Cavitation and Excitation Forces of a Tunnel Thruster [J]. J Shanghai Jiaotong Univ Sci, 2019, 24(2): 158-167. |
[14] | LUO Yuxi1* (罗语溪), LIANG Jiuxing1 (梁九兴), WANG Xuanyin2 (王宣银), XU Zhipeng3 (徐志鹏). Compensation of Pressure Enthalpy Effects on Temperature Fields for Throttling of High-Pressure Real Gas [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(2): 216-223. |
[15] | LI Yilin,SONG Baowei. Influence of the Cavitator Diameter on the Performance of a Supercavitating Underwater Vehicle [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1488-1492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||