Journal of Shanghai Jiaotong University ›› 2020, Vol. 54 ›› Issue (5): 481-489.doi: 10.16183/j.cnki.jsjtu.2020.05.005
Previous Articles Next Articles
WANG Kai,XIA Tian,RAO Yu
Published:
2020-06-02
CLC Number:
WANG Kai,XIA Tian,RAO Yu. Flow Characteristics and Heat Transfer of Swirl Cooling in Three-Pass Channel[J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 481-489.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.05.005
[1]KREITH F, MARGOLIS D. Heat transfer and friction in turbulent vortex flow[J]. Applied Scientific Research, Section A, 1959, 8(1): 457-473. [2]BIEGGER C, SOTGIU C, WEIGAND B. Numerical investigation of flow and heat transfer in a swirl tube[J]. International Journal of Thermal Sciences, 2015, 96: 319-330. [3]JIANG Y T, ZHENG Q, YUE G Q, et al. Numerical investigation on blade leading edge high-efficiency swirl and impingement phase transfer cooling mechanism[J]. Numerical Heat Transfer, 2016, 69(1): 67-84. [4]WANG N, CHEN A F, ZHANG M J, et al. Turbine blade leading edge cooling with one row of normal or tangential impinging jets[C]//ASME Turbine Technical Conference and Exposition (Turbo Expo). Charlotte, NC, USA: ASME, 2017: V05AT16A007. [5]KUSTERER K, LIN G, SUGIMOTO T, et al. Novel gas turbine blade leading edge cooling configuration using advanced double swirl chambers[C]//ASME Turbo Expo: Turbine Technical Conference & Exposition. Montreal, Canada: ASME, 2015: V05AT11A006. [6]KUSTERER K, BHLER P, LIN G, et al. Conjugate heat transfer analysis of a blade leading edge cooling configuration using double swirl chambers[C]//ASME Turbo Expo: Turbine Technical Conference and Exposition. Seoul, South Korea: ASME, 2016: V05BT11A010. [7]BIEGGER C, WEIGAND B. Flow and heat transfer measurements in a swirl chamber with different outlet geometries[J]. Experiments in Fluids, 2015, 56(4): 78. [8]FAN X J, DU C H, LI L, et al. Numerical simulation on effects of film hole geometry and mass flow on vortex cooling behavior for gas turbine blade leading edge[J]. Applied Thermal Engineering, 2017, 112: 472-483. [9]DU C H, LI L, FAN X J, et al. Rotational influences on aerodynamic and heat transfer behavior of gas turbine blade vortex cooling with bleed holes[J]. Applied Thermal Engineering, 2017, 121: 302-313. [10]LIU Y Y, RAO Y, WEIGAND B. Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface[J]. International Journal of Heat and Mass Transfer, 2019, 128: 54-65. [11]LIU Z, LI J, FENG Z P, et al. Numerical study on the effect of jet nozzle aspect ratio and jet angle on swirl cooling in a model of a turbine blade leading edge cooling passage[J]. International Journal of Heat and Mass Transfer, 2015, 90: 986-1000. [12]LIU Z, LI J, FENG Z P, et al. Numerical study on the effect of jet spacing on the swirl flow and heat transfer in the turbine airfoil leading edge region[J]. Numerical Heat Transfer, 2016, 70(9): 980-994. [13]DU C H, LI L, WU X, et al. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge[J]. Applied Thermal Engineering, 2016, 93: 1020-1032. [14]MOUSAVI S M, GHADIMI B, KOWSARY F. Numerical study on the effects of multiple inlet slot configurations on swirl cooling of a gas turbine blade leading edge[J]. International Communications in Heat and Mass Transfer, 2018, 90: 34-43. [15]DAMAVANDI M D, MOUSAVI S M, SAFIKHANI H. Pareto optimal design of swirl cooling chambers with tangential injection using CFD, GMDH-type of ANN and NSGA-II algorithm[J]. International Journal of Thermal Sciences, 2017, 122: 102-114. [16]BRUSCHEWSKI M, SCHERHAG C, SCHIFFER H P, et al. Influence of channel geometry and flow variables on cyclone cooling of turbine blades[J]. Journal of Turbomachinery, 2016, 138(6): 061005. [17]徐虹艳. 涡轮叶片尾缘旋流冷却特性研究[D]. 南京: 南京航空航天大学, 2012. XU Hongyan. Investigation on vortex cooling performances in turbine blade trailing edge[D]. Nanjing: Nanjing University of Aeronautics and Astronautic, 2012. [18]KHALATOV A, SYRED N, BOWEN P, et al. Innovative cyclone cooling scheme for gas turbine blade: Thermal-hydraulic performance evaluation[C]//ASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich, Germany: ASME, 2000: V003T01A045. [19]MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17. [20]RAO Y, BIEGGER C, WEIGAND B. Heat transfer and pressure loss in swirl tubes with one and multiple tangential jets pertinent to gas turbine internal cooling[J]. International Journal of Heat and Mass Transfer, 2016, 106: 1356-1367. |
[1] | LI Wenchen, CAI Yifan, YAN Taisen, LI Tingxian, WANG Ruzhu. Preparation and Thermal Storage Properties of Sodium Acetate Trihydrate-Expanded Graphite as Phase Change Composite [J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1015-1023. |
[2] | ZOU Xumao, LI Liangxing, KONG Liubo, WANG Huasheng. TwoPhase Flow Resistance and Interfacial Drag in Packed Beds [J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 470-. |
[3] | LI Tian1,ZHANG Peng1,LONG Zhiqiang1,SHEN Biao1,2. ThreeDimensional Numerical Study of Natural Convection of Supercritical Binary Fluid [J]. Journal of Shanghai Jiaotong University, 2017, 51(1): 12-. |
[4] | XING Jianfeng1,RAO Yu1,LI Bo2,RAO Kun3. An Experimental Study of Turbulent Flow and Heat Transfer in a Cooling Channel with Small V RibDimple Compound Structure [J]. Journal of Shanghai Jiaotong University, 2017, 51(1): 40-. |
[5] | LI Pengchenga,SUN Zhijiana,TANG Zhoua,YU Zitaoa,b,HU Yacaia. Laminar Heat Transfer Enhancement of Graphite Tube with Internal FanShaped Fins [J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 557-562. |
[6] | RAO Yu,LI Lin. Experimental Study of Flow and Heat Transfer in Cooling Channels with Pin Fin Arrays and Detached Pin Fin Arrays [J]. Journal of Shanghai Jiaotong University, 2014, 48(06): 782-787. |
[7] | LI Shuang-Shuang, MA Qi, LIU Zhen-Hua. Application of Water-Based Nano-Fluid in Copper Wire Flat Heat Pipe with Mesh Structure [J]. Journal of Shanghai Jiaotong University, 2013, 47(04): 555-559. |
[8] | LI Chun-Xi, SHEN Lei, YE Xue-Min, TONG Jia-Lin. Investigation on Dewetting Dynamics of Thin Liquid Film Containing Insoluble Surfactant [J]. Journal of Shanghai Jiaotong University, 2013, 47(04): 572-578. |
[9] | HAN Wei-Zhe, DING Guo-Liang, HU Hai-Tao, ZHUANG Da-Wei. Numerical Model of Heat and Mass Transfer for Tube-Finned Heat Exchangers under Dehumidifying Conditions [J]. Journal of Shanghai Jiaotong University, 2013, 47(03): 385-391. |
[10] | DING Guo-Liang-1, PENG Hao-2, HU Hai-Tao-1, ZHUANG Da-Wei-1. Migration Characteristic of Spherical Nanoparticles from Liquid to Vapor Phase during Refrigerant/Nanolubricant Mixture Boiling [J]. Journal of Shanghai Jiaotong University, 2012, 46(05): 671-676. |
[11] | WANG Yan-Feng, HU Yu-Li. Influence by Heat Conductivity of Battery Framework to Thermal Process of Underwater Vehicle’s Battery Compartment [J]. Journal of Shanghai Jiaotong University, 2012, 46(05): 683-687. |
[12] | HU Hai-Tao-1, HUANG Xiang-Chao-1, DING Guo-Liang-1, DENG Bin-2, ZHENG Yong-Xin-3, GAO Yi-Feng-3, SONG Ji-3. The Influence of Oil on Pressure Drop of R410A Flow Condensation in Small Diameter Microfin Tube [J]. Journal of Shanghai Jiaotong University, 2012, 46(04): 515-519. |
[13] | ZHANG Ping1,GU Bo1,WANG Ting1,ZHAO Pengcheng2,MA Hongtao2. Theoretical Model and Experimental Research on Multiple Micro-channel Parallel Flow Condenser [J]. Journal of Shanghai Jiaotong University, 2013, 47(11): 1738-1744. |
[14] | LIU Zhenyu,CHEN Yaqi,WU Huiying. Analysis of Thermal Deformation of Solar Panels in Orbit under Variable Working Conditions [J]. Journal of Shanghai Jiaotong University, 2013, 47(11): 1762-1766. |
[15] | CHEN Yanjun,LI Yuanyang,LIU Zhenhua. Numerical Simulation of Forced Convective Heat Transfer and Flow Characteristics of Nanofluids in Small Tubes Using Multiphase Models [J]. Journal of Shanghai Jiaotong University, 2014, 48(09): 1303-1308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||