Journal of Shanghai Jiaotong University ›› 2019, Vol. 53 ›› Issue (8): 983-989.doi: 10.16183/j.cnki.jsjtu.2019.08.014
Previous Articles Next Articles
ZHANG Yungang,YANG Jianfeng,YI Benshun
Online:
2019-08-28
Published:
2019-09-10
CLC Number:
ZHANG Yungang,YANG Jianfeng,YI Benshun. Improved Residual Encoder-Decoder Network for Low-Dose CT Image Denoising[J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 983-989.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.08.014
[1]李琳, 罗德红. 低剂量CT扫描技术的临床应用 [J]. 当代医学, 2009, 15(20): 146-149. LI Lin, LUO Dehong. The clinical application of low-dose CT scanning [J]. Contemporary Medicine, 2009, 15(20): 146-149. [2]MORI I, MACHIDA Y, OSANAI M, et al. Photon starvation artifacts of X-ray CT: Their true cause and a solution [J]. Radiological Physics & Technology, 2013, 6(1): 130-141. [3]MANDUCA A, YU L F, TRZASKO J D, et al. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT [J]. Medical Physics, 2009, 36(11): 4911-4919. [4]KACHELRIES M, WATZKE O, KALENDER W A. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT [J]. Medical Physics, 2001, 28(4): 475-490. [5]HSIEH J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise [J]. Medical Physics, 1998, 25(11): 2139-2147. [6]WANG J, LI T F, LU H B, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-Ray computed tomography [J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1272-1283. [7]SMITH P R, PETERS T M, BATES R H T. Image reconstruction from finite numbers of projections [J]. Journal of Physics A: Mathematical, Nuclear and General, 1973, 6(3): 361-382. [8]董继伟. CT迭代重建技术原理及其研究进展 [J]. 中国医学装备, 2016, 13(10): 128-133. DONG Jiwei. The progress on research and principles of computed tomography iterative reconstruction [J]. China Medical Equipment, 2016, 13(10): 128-133. [9]ZENG D, HUANG J, BIAN Z Y, et al. A simple low-dose X-ray CT simulation from high-dose scan [J]. IEEE Transactions on Nuclear Science, 2015, 62(5): 2226-2233. [10]牛彦敏, 马燕, 王旭初. 非下采样Contourlet域中基于改进隐马尔可夫树的低剂量CT图像去噪 [J]. 激光与光电子学进展, 2009, 46(12): 115-119. NIU Yanmin, MA Yan, WANG Xuchu. Low-dose CT image denoising via improved hidden Markov tree model in nonsubsampled contourlet domain [J]. Laser & Optoelectronics Progress, 2009, 46(12): 115-119. [11]KANG D, SLOMKA P J, NAKAZATO R, et al. Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm [J]. Proceedings of SPIE. 2013, 8669: 86692G. [12]GREEN M, MAROM E M, KIRYATI N, et al. Efficient low-dose CT denoising by locally-consistent non-local means (LC-NLM) [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer, 2016: 423-431. [13]朱永成, 陈阳, 罗立民, 等. 基于字典学习的低剂量X-ray CT图像去噪 [J]. 东南大学学报(自然科学版), 2012, 42(5): 864-868. ZHU Yongcheng, CHEN Yang, LUO Limin, et al. Dictionary learning based denoising of low-dose X-ray CT image [J]. Journal of Southeast University (Natural Science Edition), 2012, 42(5): 864-868. [14]CHEN H, ZHANG Y, ZHANG W H, et al. Low-dose CT denoising with convolutional neural network [C]//International Symposium on Biomedical Imaging. Melbourne: IEEE, 2017: 143-146. [15]DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. [16]CHEN H, ZHANG Y, ZHANG W H, et al. Low-dose CT via convolutional neural network [J]. Biomedical Optics Express, 2017, 8(2): 679-694. [17]CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a residual encoder-decoder convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. [18]NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]//International Conference on Machine Learning. Haifa: ACM, 2010: 807-814. [19]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [20]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]//International Conference on Machine Learning. Lille: JMLR, 2015: 448-456. [21]JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding [C]//ACM International Conference on Multimedia. Orlando: ACM, 2014: 675-678. [22]KINGMA D P, BA J. Adam: A method for stochastic optimization [C]//International Conference on Learning Representations. San Diego: Springer, 2015: 1-15. |
[1] | QIAN Peng, WANG Guoliang, ZHU Wenfeng. Modeling and Optimization of 3D Assembly Tolerance for Window Lifting Under Flexible Deformation [J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1134-1141. |
[2] | BAO Qinglin, CHAI Huaqi, ZHAO Songzheng, WANG Jilin. Model of Technology Opportunity Mining Using Machine Learning Algorithm and Its Application [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 705-717. |
[3] | LI Baihe, JIANG Zuhua, TAO Ningrong, MENG Lingtong, ZHENG Hong. Ship Block Transportation Scheduling Considering Cooperative Transportation of Flatcars [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 718-727. |
[4] | MA Zhonghang, ZHANG Zhinan. Design and Realization of a Versatile Simulation Platform for Telecontrol Multi-Rotor Unmanned Aerial Vehicle with a Robotic Arm [J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 636-642. |
[5] | MENG Lingtong, JIANG Zuhua, TAO Ningrong, LIU Jianfeng, ZHENG Hong. Multi-Stockyard Scheduling Considering Technological Process and Combined Assembly Block [J]. Journal of Shanghai Jiao Tong University, 2020, 54(4): 331-343. |
[6] | ZHANG Jie,ZHAO Xinming,ZHANG Peng,SHENG Xia,CHAO Xiaona,TIAN Fengxiang. Early Warning Method for Tardiness Precaution Oriented to Rocket Final Assembly Process [J]. Journal of Shanghai Jiaotong University, 2020, 54(3): 322-330. |
[7] | SUN Mingyang,YAN Guozheng,LIU Dasheng,WANG Zhiwu,HAN Ding,ZHAO Kai,YANG Lei. High Accuracy Ultra Wideband Real Time Location System for Drug Rehabilitation Center [J]. Journal of Shanghai Jiaotong University, 2020, 54(1): 76-84. |
[8] | WANG Hongyu,YIN Wurong,WANG Liang,HU Jianghao,QIAO Wenchao. Fast Edge Extraction Algorithm Based on HSV Color Space [J]. Journal of Shanghai Jiaotong University, 2019, 53(7): 765-772. |
[9] | ZHOU Binghai,LIU Wenlong. Multi-Objective Hybrid Flow-Shop Scheduling Problem Considering Energy Consumption and On-Time Delivery [J]. Journal of Shanghai Jiaotong University, 2019, 53(7): 773-779. |
[10] | MENG Lingtong,JIANG Zuhua,TAO Ningrong,LIU Jianfeng,LI Baihe. Combined Assembly Block Scheduling in Storage Yard of Shipbuilding [J]. Journal of Shanghai Jiaotong University, 2019, 53(7): 780-788. |
[11] | JIANG Xudong,LI Pengfei,LIU Zheng,TENG Xiaoyan. Arterial Injury Assessment by Computational Interaction Model of Shear Thinning Blood with Expanded Stenotic Vascular [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 757-764. |
[12] | TANG Ran,ZHAO Yingxin,WU Hong. Automatic Identification System Signal Detection Algorithm Based on Improved Feedback Decision [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 610-615. |
[13] | YE Xian,HU Jie,TIAN Pan,QI Jin,CHE Datian,DING Ying. Automatic Sleep Scoring Based on Refined Composite Multi-Scale Entropy and Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 321-326. |
[14] | SHEN Ting,SUN Tanfeng,JIANG Xinghao. Detection of Double Compression with the Same Quantization Parameter Based on Dual Encoding Parameter Model [J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 334-340. |
[15] | SUN Yiqi,WU Aiguo,DONG Na,SHAO Yizhe. A Novel Algorithm for Hand Tracking with Particle Filter and Improved GVF Snake [J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 801-807. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||