Journal of Shanghai Jiaotong University ›› 2019, Vol. 53 ›› Issue (8): 898-906.doi: 10.16183/j.cnki.jsjtu.2019.08.002
Previous Articles Next Articles
PAN Jiahe a,LIAO Chencong a,b,c,CHEN Jinjian a,b,c
Online:
2019-08-28
Published:
2019-09-10
CLC Number:
PAN Jiahe,LIAO Chencong,CHEN Jinjian. Solitary Wave-Induced Response of Sloping Seabed with a Buried Pipeline[J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 898-906.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.08.002
[1]曾婧扬. 孤立波作用下海堤越浪流数值模拟[D]. 上海: 上海交通大学, 2013. ZENG Jingyang. Numerical simulation of overtopping flow against sea dikes under solitary waves[D]. Shanghai: Shanghai Jiao Tong University, 2013. [2]SYNOLAKIS C E. The runup of long waves[D]. Los Angeles, California, USA: California Institute of Technology, 1986. [3]宣瑞韬. 海啸波爬高的水槽实验研究[D]. 上海: 上海交通大学, 2013. XUAN Ruitao. An experimental study on run-up of tsunami waves in wave flume[D]. Shanghai: Shanghai Jiao Tong University, 2013. [4]王贺, 吴卫, 刘桦. 等波高双孤立波直墙爬高的数值模拟[J]. 力学季刊, 2015, 36(1): 26-39. WANG He, WU Wei, LIU Hua. Numerical simulation of run-up of double solitary waves with the same height on vertical wall[J]. Chinese Quarterly of Mechanics, 2015, 36(1): 26-39. [5]刘博, 郑东生. 波流共同作用下多孔介质海床动力响应的解析解[J]. 工程地质学报, 2012, 20(5): 674-681. LIU Bo, JENG Dongsheng. Analytical solution for dynamic response of porous seabed combined wave and current loadings[J]. Journal of Engineering Geology, 2012, 20(5): 674-681. [6]JENG D S, YE J H, ZHANG J S, et al. An integrated model for the wave-induced seabed response around marine structures: Model verifications and applications[J]. Coastal Engineering, 2013, 72: 1-19. [7]ZHANG J S, ZHANG C, JENG D S. Three-dimensional model for wave-induced dynamic pore pressure around monopile foundation[C]//Numerical Analysis and Applied Mathematics (ICNAAM 2012). New York, USA: American Institute of Physics, 2012: 1472-1475. [8]张军, 周香莲, 颜宇光, 等. 波浪作用下管线-海床模型动态响应及液化[J]. 上海交通大学学报, 2014, 48(11): 1621-1626. ZHANG Jun, ZHOU Xianglian, YAN Yuguang, et al. Numerical study of wave-induced dynamic soil response and liquefaction[J]. Journal of Shanghai Jiao Tong University, 2014, 48(11): 1621-1626. [9]胡翔, 陈锦剑, 王建华. 短峰波作用下饱和海床中的单桩响应分析[J]. 上海交通大学学报, 2016, 50(11): 1737-1741. HU Xiang, CHEN Jinjian, WANG Jianhua. Analysis of a single pile response in a saturated seabed under short-crested wave[J]. Journal of Shanghai Jiao Tong University, 2016, 50(11): 1737-1741. [10]陈宝清, 张金凤, 史小康. 基于OpenFOAM的波浪作用下海床动力响应[J]. 中国港湾建设, 2017, 37(3): 1-5. CHEN Baoqing, ZHANG Jinfeng, SHI Xiaokang. Numerical simulation for the dynamic response of seabed under waves based on the OpenFOAM[J]. China Harbour Engineering, 2017, 37(3): 1-5. [11]JENG D S, LIN Y S. Wave-induced pore pressure around a buried pipeline in Gibson soil: Finite element analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(13): 1559-1578. [12]ZHAO H Y, JENG D S, ZHANG H J, et al. 2-D integrated numerical modeling for the potential of solitary wave-induced residual liquefaction over a sloping porous seabed[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(1): 1-18. [13]ZHAO H Y, JENG D S. Numerical study of wave-induced soil response in a sloping seabed in the vicinity of a breakwater[J]. Applied Ocean Research, 2015, 51: 204-221. [14]YOUNG Y L, XIAO H, MADDUX T. Hydro- and morpho-dynamic modeling of breaking solitary waves over a fine sand beach. Part I. Experimental study[J]. Marine Geology, 2010, 269(3/4): 107-118. [15]XIAO H, YOUNG Y L, PRVOST J H. Parametric study of breaking solitary wave induced liquefaction of coastal sandyslopes[J]. Ocean Engineering, 2010, 37(17/18): 1546-1553. [16]GAO F P, HAN X T, CAO J, et al. Submarine pipeline lateral instability on a sloping sandy seabed[J]. Ocean Engineering, 2012, 50: 44-52. [17]JENG D S, POSTMA P F, LIN Y S. Stresses and deformation of buried pipeline under wave loading[J]. Journal of Transportation Engineering, 2001, 127(5): 398-407. [18]JENG D S. Numerical modeling for wave-seabed-pipe interaction in a non-homogeneous porous seabed[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(8): 699-712. |
[1] | SHEN Wenzhong. What Will Be the Cheapest Energy on the Earth? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 86-87. |
[2] | WANG Fei, DING Wei, DENG Deheng, WU Xiaofeng. Motion Modeling and Numerical Simulation Study of Underwater Multi-Cable Multi-Body Towed System [J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 441-450. |
[3] | ZHAO Guocheng,XIAO Longfei,YANG Jianmin,YUE Ziyu. Experimental Research on Force Characteristics of a Spherical Particle in Deep Sea Hydraulic Collecting [J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 907-912. |
[4] | XU Pengcheng,GAO Jin,QIU Guozhi. Fire Smoke Spread Law in Deep Water Semi-Submersible Platform [J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 913-920. |
[5] | ZHANG Shuo,YE Guanlin,ZHEN liang,LI Mingguang,CHEN Chaobin. Constitutive Model of Soft Soil After Considering Small Strain Stiffness Decay Characteristics [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 535-539. |
[6] | YUAN Yuchao,XUE Hongxiang,TANG Wenyong. Numerical Simulation and Experimental Verification of Vortex-Induced Vibration for Risers After Considering Platform Heave Motion [J]. Journal of Shanghai Jiaotong University, 2019, 53(4): 480-487. |
[7] | ZHANG Yizhou, LIAO Chencong, CHEN Jinjian. Interaction Between Mono-Pile and Porous Seabed Under Cnoidal Wave and Pile Rocking [J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 85-92. |
[8] | RONG Fu, LIAO Chencong, TONG Dagui, ZHOU Xianglian. Analysis of Wave-Induced Liquefaction of Seabed with Variation in Permeability Anisotropy [J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 93-99. |
[9] | QIN Hao,TANG Wenyong,XUE Hongxiang. Numerical Simulations of Impact Loads and Structural Responses of Bottom Decks of Platforms Caused by Nonlinear Freak Waves [J]. Journal of Shanghai Jiaotong University, 2018, 52(9): 1009-1016. |
[10] | XU Mengmeng,FENG Zhengping,BI Anyuan,FAN Bin,JIANG Tao. Rotational Hydrodynamic Calculation of Complex-Shaped Underwater Vehicle [J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 764-769. |
[11] | SHEN Zhiping,SHAN Tiebing,PAN Fanghao,ZHANG Haibin,WANG Pu. Vortex-Induced Motion Response of Semi-Submersible Platform in Deep Water: II. Investigation on Hull Optimization [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1504-1511. |
[12] | SHAN Tiebing,SHEN Zhiping. Vortex-Induced Motion Response of Semi-Submersible Platform in Deep Water: I. Investigation on Key Characteristics [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1493-1503. |
[13] | HUO Xingxing,GE Tong,WANG Xuyang. Adaptive Position and Attitude Control for Deep Sea WorkClass#br# Remotely Operated Underwater Vehicle Based on Fuzzy Compensation [J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 403-. |
[14] | HUO Fali1,ZHANG Jian1,YANG Deqing2. Sensitivity Study of Wave Slamming with Respect to#br# Water Depth for Floating Platform [J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 410-. |
[15] | WU Fan, XIAO Longfei, LIU Mingyue, TIAN Xinliang. A Two-Dimensional Numerical Study of Vortex Induced Motion of a Semi-Submersible with Rectangular Sections in Coupling Currents and Waves [J]. Journal of Shanghai Jiao Tong University, 2016, 50(03): 460-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||