[1]GHOSHAL A. Structural health monitoring techniques for wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(3): 309-324.
[2]邢帅恒, 周里群, 李玉平. 大型风力机复合材料叶片结构动力特性分析[J]. 机械强度, 2014, 36(1): 105-109.
XING Shuaiheng, ZHOU Liqun, LI Yuping. Wind turbine composite blade dynamic character research[J]. Journal of Mechanical Strength, 2014, 36(1): 105-109.
[3]马静敏, 任勇生. 风力机叶片的自由振动特性分析[J]. 振动与冲击, 2015, 34(17): 105-110.
MA Jingmin, REN Yongsheng. Free vibration characteristics of wind turbine blades[J]. Journal of Vibration and Shock, 2015, 34(17): 105-110.
[4]MURTAGH P J, GHOSH A, BASU B, et al. Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence[J]. Wind Energy, 2008, 11(4): 305-317.
[5]KANG N, PARK S C, PARK J, et al. Dynamics of flexible tower-blade and rigid nacelle system: dynamic instability due to their interactions in wind turbine[J]. Journal of Vibration and Control, 2016, 22(3): 826-836.
[6]韩江, 乔印虎, 张春燕, 等. 智能风力机叶片振动主动控制研究综述[J]. 应用力学学报, 2015, 32(3): 446-453.
HAN Jiang, QIAO Yinhu, ZHANG Chunyan, et al. The review for elastomer smart active wind turbine blade vibration control[J]. Chinese Journal of Applied Mechanics, 2015, 32(3): 446-453.
[7]詹鹏. 风机智能叶片的控制问题[D] .北京: 华北电力大学控制与计算机工程学院, 2015.
ZHAN Peng. Research on control of wind turbine smart-blade[D]. Beijing: School of Control and Computer Engineering, North China Electric Power University, 2015.
[8]刘姝, 李中涛, 秦廷, 等. 压电陶瓷智能材料的风机叶片振动主动控制研究[J]. 大电机技术, 2015, 4: 59-64.
LIU Shu, LI Zhongtao, QIN Ting, et al. Study on active vibration control of intelligent materials in wind turbine blades[J]. Large Electric Machine and Hydraulic Turbine, 2015, 4: 59-64.
[9]乔印虎, 韩江, 张春燕, 等. 风力机叶片压电振动的主动控制研究[J]. 应用力学学报, 2013, 30(4): 587-592.
QIAO Yinhu, HAN Jiang, ZHANG Chunyan, et al. Active vibration control of wind turbine blades by piezoelectric materials[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 587-592.
[10]杜向红. 具有形状记忆合金(SMA)纤维驱动的复合材料箱型薄壁梁的非线性变形[D]. 山东: 山东科技大学机械电子工程学院, 2011.
DU Xianghong. Nonlinear deformation of thin-walled composite box beams with SMA fibers[D]. Shandong: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, 2011.
[11]任勇生, 杜向红, 姚文丽, 等. 旋转SMA纤维混杂复合材料薄壁梁的自由振动[J].固体力学学报, 2011, 32(3): 258-276.
REN Yongsheng, DU Xianghong, YAO Wenli, et al. Free vibration analysis of rotating composite thin-walled closed section beams with SMA fibers[J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 258-276.
[12]CHANDRA R. Active shape control of composite blades using shape memory actuation[J]. Smart Materials and Structures, 2001, 10(5): 1018-1024.
[13]张景业. 伪弹性形状记忆合金混杂复合材料振动特性研究[D]. 哈尔滨: 哈尔滨工业大学机电工程学院, 2016.
ZHANG Jingye. Study on vibration of superelastic shape memory alloy hybrid composite structure[D]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology, 2016.
[14]KHALILI S M R, DEHKORDI M B, CARRERA E. A nonlinear finite element model using a unified formulation for dynamic analysis of multilayer composite plate embedded with SMA wires[J]. Composite Structures, 2013, 106(12): 635-645.
[15]王社良, 袁磊, 杨涛, 等. 基于SMA 新型阻尼器的框架结构地震反应控制分析[J]. 世界地震工程, 2017, 33(1): 48-53.
WANG Sheliang, YUAN Lei, YANG Tao, et al. Analysis of seismic response control for frame structure based novel shape memory alloy damper[J]. World Earthquake Engineering, 2017, 33(1): 48-53.
[16]孙双双, RAJAPAKSE R K N D, 姜先策, 等. 含SMA支撑的无阻尼框架结构的动力特性[J]. 上海交通大学学报, 2006, 40(8): 1376-1380.
SUN Shuangshuang, RAJAPAKSE R K N D, JIANG Xiance, et al. Dynamic characteristics of shape memory alloys braced frame structures[J]. Journal of Shanghai Jiao Tong University, 2006, 40(8): 1376-1380.
[17]BRINSON L C. One dimensional constitutive behavior of shape memory alloy: Thermomechanical derivation with non-constant material functions and redefined martensite and internal variable[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(2): 229-242.
[18]KHALILI S M R, DEHKORDI M B, SHARIYAT M. Modeling and transient dynamic analysis of pseudoelastic SMA hybrid composite beam[J]. Applied Mathematics and Computation, 2013, 219(18): 9762-9782. |