Journal of Shanghai Jiao Tong University ›› 2018, Vol. 52 ›› Issue (6): 698-707.doi: 10.16183/j.cnki.jsjtu.2018.06.011
Previous Articles Next Articles
SUN Xiaoshuai,YAO Chaobang,XIONG Ying,YE Qing
Published:
2025-07-01
CLC Number:
SUN Xiaoshuai,YAO Chaobang,XIONG Ying,YE Qing. Frequency Domain Computation Study on the Seakeeping Performance of Small-Waterplane-Area Twin Hull Based on the Translating-Pulsating Source Green Function[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6): 698-707.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2018.06.011
[1]KOS S, BRI D, FRANI V. Comparative analysis of conventional and swath passenger catamaran[C]∥Proceedings of the 12th International Conference on Transport Science, Portoro: Fakulteta za Pomorstvo in Promet, 2009. [2]BRIZZOLARA S, VERNENGO G. Automatic optimization computational method for unconventional SWATH ships resistance[J]. International Journal of Mathematical Models and Methods in Applied Sciences, 2011, 5(5): 882-889. [3]BOUSCASSE B, BROGLIA R, STERN F. Experimental investigation of a fast catamaran in head waves[J]. Ocean Engineering, 2013, 72(7): 318-330. [4]LEE C M. Theoretical prediction of motion of small waterplane area, twin-hull (SWATH) ships in waves[R]. SPD-76-0046, Bethesda: DTNSRDC Report, 1976. [5]HONG Y S. Improvements in the prediction of heave and pitch motions for SWATH ships[R]. SDR0928-02, Bethesda: DTNSRDC Departmental Report, 1980. [6]MCCREIGHT K K, STAHL R. Vertical plane motions of SWATH ships in regular waves[R]. SPD-1076-01, Bethesda: DTNSRDC Report, 1983. [7]MCCREIGHT K K. Predicting the motions of SWATH ships in waves—A validated mathematical model[R]. CRDKNSWC/HD-1350-03, Washing-ton: Naval Surface Warfare Center Carderock Division Hydromechanics Directorate Research and Development Report, 1995. [8]李向群. SWATH船型的耐波性研究[J]. 上海船舶运输科学研究所学报, 1988, 2: 41-46. LI Xiangqun. A study on the seakeeping ability of SWATH[J]. Journal of Shanghai Ship and Shipping Research Institute, 1988, 2: 41-46. [9]董祖舜, 董文才. 小水线面双体船纵向运动稳定性的简化判据及分析[J]. 中国造船, 1994 (4): 36-48. DONG Zushun, DONG Wencai. A simplified criterion and an analysis of some influence factors on longitudinal motion stability of small waterplane area twin-hull ships[J]. Shipbuilding of China, 1994(4): 36-48. [10]刘志华, 董文才, 熊鹰. 小型高速SWATH船下体型线研究[J]. 船舶工程, 2004(6): 4-8. LIU Zhihua, DONG Wencai, XIONG Ying. Study on lines of lower hull of small-sized high-speed SWATH ship[J]. Ship Engineering, 2004(6): 4-8. [11]毛筱菲. 小水线面双体船在波浪中的运动响应预报[J]. 船海工程, 2006 (4): 13-15. MAO Xiaofei. Numerical study of the motion response prediction of SWATH ship in waves[J]. Ship and Ocean Engineering, 2006(4):13-15. [12]CHAN H S. Prediction of motion and wave loads of twin-hull ships[J]. Marine Structures, 1996(6): 75-102. [13]吴介, 谷家扬, 管义锋, 等. 基于 Rankine 源法的小水线面双体科考船耐波性预报[J]. 江苏科技大学学报 (自然科学版), 2015, 29(2): 103-107. WU Jie, GU Jiayang, GUAN Yifeng, et al. Prediction of SWATH research ship seakeeping performance based on the Rankine source method[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2015, 29(2): 103-107. [14]QIAN P, YI H, LI Y. Numerical and experimental studies on hydrodynamic performance of a small-waterplane-area-twin-hull (SWATH) vehicle with inclined struts[J]. Ocean Engineering, 2015, 96: 181-191. [15]邓磊, 董文才, 姚朝帮. 顶浪规则波中小水线面双体船纵向运动特性数值分析[J]. 舰船科学技术, 2016, 38(8): 5-10. DENG Lei, DONG Wencai, YAO Chaobang. Numerical study on characteristics of SWATH ship longitudinal motions in regular head waves[J]. Ship Science and Technology, 2016, 38(8): 5-10. [16]BONFIGLIO L, BRIZZOLARA S, CHRYSSOSTOMIDIS C. Viscous free surface numerical simulations of oscillating SWATH ship sections[J]. Recent Researches in Mechanical Engineering, 2013(1): 33-38. [17]BONFIGLIO L, BRIZZOLARA S. Influence of viscosity on radiation forces: A comparison between monohull, catamaran and SWATH[C]∥Proceedings of the 23th International Offshore and Polar Engineering Conference, Alaska: International Society of Offshore and Polar Engineers, 2013. [18]BRIZZOLARA S, BONFIGLIO L, MEDEIROS J S. Influence of viscous effects on numerical prediction of motions of SWATH vessels in waves[J]. Ocean Systems Engineering, 2013, 3(3): 219-236. [19]XU Y, DONG W C. Study on characteristics of 3-D translating-pulsating source Green function of deep-water Havelock form and its fast integration method[J]. China Ocean Engineering, 2011, 25(3): 365-380. [20]YAO C B, DONG W C. Study on fast integration method for Bessho form translating-pulsating source Green’s function distributing on a panel[J]. Ocean Engineering, 2014, 89: 10-20. [21]YAO C B, DONG W C. A fast integration method for translating-pulsating source Green’s function in Bessho form[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(2): 108-119. |
[1] | GUO Jun,CHEN Zuogang,DAI Yuanxing,CHEN Jianping. Research and Application of the Capture Area Obtaining Method for Waterjet [J]. Journal of Shanghai Jiaotong University, 2020, 54(1): 1-9. |
[2] | ZHAO Dongya,HU Zhiqiang,CHEN Gang. Coupling Effects of Liquid Loading Vessels in the Floating Liquefied Natural Gas System [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 540-548. |
[3] | CHEN Min, CHEN Ke, YOU Yunxiang, LI Fei. Prediction of Internal Solitary Wave Loads on NANHAI 8 Semi-Submersible Platform [J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 42-48. |
[4] | ZHANG Baoji1,LU jiang2,GU min2. Sailing Safety Based on SurfRiding Broaching Vulnerability Criteria [J]. Journal of Shanghai Jiaotong University, 2016, 50(01): 140-144. |
[5] | LIU Hana,MA Ninga,b,SHAO Chuanga,GU Xiechonga,b. Numerical Simulation of Planar Motion Mechanism Test and Hydrodynamic Derivatives of a Ship in Laterally Restricted Water [J]. Journal of Shanghai Jiaotong University, 2016, 50(01): 115-122. |
[6] | FANG Zhao-Zhao-1, 2 , ZHU Ren-Chuan-1, MIAO Guo-Ping-1, GONG Cheng-1. Numerical Simulation of Diffraction Problems of Moving Vessels in Numerical Wave Tank [J]. Journal of Shanghai Jiaotong University, 2012, 46(08): 1203-1209. |
[7] | FENG Peiyuana,MA Ninga,b,GU Xiechonga,b. Application of Wave Energy Recovery by Oscillating Wings in Energy-efficient Ship Propulsion [J]. Journal of Shanghai Jiaotong University, 2013, 47(06): 923-927. |
[8] | PAN Guang1,HU Bin1,2,WANG Peng1,YANG Zhidong1,WANG Yiyun1. Numerical Simulation of Steady Hydrodynamic Performance of a Pump-jet Propulsor [J]. Journal of Shanghai Jiaotong University, 2013, 47(06): 932-937. |
[9] | DONG Xiaoqian,YANG Chenjun. CFD Study of Hub Gap Effect on Podded Propulsor Performance [J]. Journal of Shanghai Jiaotong University, 2013, 47(06): 932-937. |
[10] | LI Hongwei,PANG Yongjie,QIN Zaibai,YANG Yi. Active Absorption Wave-Making Using Generalized Predictive Control [J]. Journal of Shanghai Jiaotong University, 2014, 48(1): 111-115. |
[11] | LU Lin,PAN Guang. Numerical Simulation Analysis of Unsteady Cavitation Performance of a Pump-jet Propulsor [J]. Journal of Shanghai Jiaotong University, 2015, 49(02): 262-268. |
[12] | LIU Hui1,2,FENG Yukun1,2,CHEN Zuogang1,2,3,DAI Yi1,2,3,TIAN Ximin1,4. Numerical Study of Pressure Fluctuation for Bow Thruster [J]. Journal of Shanghai Jiao Tong University, 2017, 51(3): 294-. |
[13] |
NI Wenchi1,2,KANG Zhuang1,ZHANG Cheng1,ZHANG Lijian1.
Simulation of Two Degrees of Freedom VortexInduced Vibration by Using Improved Shear Stress Transport Model [J]. Journal of Shanghai Jiao Tong University, 2017, 51(7): 819-825. |
[14] |
CHENG Yong1,JI Chunyan1,LU Tingting1,ZHAI Gangjun2.
Nonlinear Numerical Investigation on the Interaction of Focused Waves with Very Large Floating Structure [J]. Journal of Shanghai Jiao Tong University, 2017, 51(7): 831-839. |
[15] | FU Huiping,LI Jie. Numerical Simulation of Cavitating Flow Around an Under-Loading Propeller [J]. Journal of Shanghai Jiao Tong University, 2018, 52(6): 631-635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||