Journal of Shanghai Jiaotong University ›› 2018, Vol. 52 ›› Issue (6): 687-692.doi: 10.16183/j.cnki.jsjtu.2018.06.009
Previous Articles Next Articles
CHEN Songkun,WANG Deyu
CLC Number:
CHEN Songkun,WANG Deyu. An Improved Monte Carlo Reliability Analysis Method Based on Neural Network[J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 687-692.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2018.06.009
[1]ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154. [2]张崎. 基于Kriging方法的结构可靠性分析及优化设计[D].大连: 大连理工大学, 2005. ZHANG Qi. Structure reliability analysis and optimization based on Kriging technique[D]. Dalian: Dalian University of Technology, 2005. [3]RASHKI M, MIRI M, MOGHADDAM M A. A new efficient simulation method to approximate the probability of failure and most probable point[J]. Structural Safety, 2012, 39(4): 22-29. [4]OKASHA N M . An improved weighted average si-mulation approach for solving reliability-based analysis and design optimization problems [J]. Structural Safety, 2016, 60: 47-55. [5]ECHARD B, GAYTON N, LEMAIRE M, et al. A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[J]. Reliability Engineering and System Safety, 2012, 111(2): 232-240. [6]陆强华. 基于径向基函数神经网络的结构可靠性分析[J]. 中国科技信息, 2008(5): 234-235. LU Qianghua. Structure reliability analysis based on radial basis function neural network[J]. China Science and Technology Information, 2008 (5): 234-235. [7]康飞, 李俊杰, 李守巨, 等. 边坡系统可靠度分析智能响应面法框架[J]. 武汉大学学报(工学版), 2016, 49(5): 654-660. KANG Fei, LI Junjie, LI Shouju, et al. Framework of intelligent response surface methods for system reliability analysis of slopes[J]. Engineering Journal of Wuhan University, 2016, 49(5): 654-660. [8]徐元铭, 陈丽华, 彭兴林. 进化神经网络响应面法在结构可靠性中应用[J]. 飞机设计, 2008, 28(5): 33-38. XU Yuanmin, CHEN Lihua, PENG Xinglin. Evolutionary neural network response surface for structural reliability analysis [J]. Aircraft Design, 2008, 28(5): 33-38. [9]胡新明,王德禹. 基于迭代均值组合近似模型和序贯优化与可靠性评估法的船舶结构优化设计[J].上海交通大学学报, 2017, 51(2): 150-156. HU Xinming, WANG Deyu. Optimization of ship structures using ensemble of surrogate with recursive arithmetic average and sequential optimization and reliability assessment[J]. Journal of Shanghai Jiao Tong University, 2017, 51(2): 150-156. [10]周明光.基于径向基函数的结构可靠性分析算法研究[D].长沙: 湖南大学, 2013. ZHOU Mingguang. Research on structural reliability analysis based on radial basis function[D]. Changsha: Hunan University, 2013. [11]DNV. Structural reliability analysis of marine structures. Classification notes no. 30.6, Det Norske Veritas Classification, AS, Hovik[M]. Norway: DNV, 1992. [12]常海超, 冯佰威, 刘祖源, 等. 船型优化中样本点选取方法对近似模型精度的影响研究[J]. 中国造船, 2013, 54(4): 84-93. CHANG Haichao, FENG Baiwei, LIU Zuyuan, et al. Influence of sample points’ selection methods on the accuracy of approximation model in hull form optimization[J]. Shipbuilding of China, 2013, 54(4): 84-93. [13]杨卓懿. 无人潜器总体方案设计的多学科优化方法研究[D].哈尔滨: 哈尔滨工程大学, 2012. YANG Zhuoyi. A study on multidisciplinary design optimization method for scheme design of autonomous underwater vehicle[D]. Harbin: Harbin Engineering University, 2012. [14]SHU Z, MOAN T. Reliability analysis of a bulk carrier in ultimate limit state under combined global and local loads in the hogging and alternate hold loading condition[J]. Marine Structures, 2011, 24(1): 1-22. [15]GASPAR B, NAESS A, LEIRA B J, et al. System reliability analysis of a stiffened panel under combined uniaxial compression and lateral pressure loads[J]. Structural Safety, 2012, 39: 30-43. |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[3] | QUAN Daying, CHEN Yun, TANG Zeyu, LI Shitong, WANG Xiaofeng, JIN Xiaoping. Radar Signal Recognition Based on Dual Channel Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 877-885. |
[4] | YU Xinye, XUE Hongxiang, Yan Shuwei. Ultimate Strength and Protective Performance of Stiffened Panels Exposed to Fire-Induced High Temperature [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 929-936. |
[5] | QIN Pengfei (秦鹏飞), WANG Xiaoliang∗ (王晓亮). Construction on Aerodynamic Surrogate Model of Stratospheric Airship [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 768-779. |
[6] | SU Hong1 (苏 红), WU Bozhao2 (吴博钊), MAO Xuchu1∗ (茅旭初). Non-Line-of-Sight Multipath Detection Method for BDS/GPS Fusion System Based on Deep Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 844-854. |
[7] | WANG Kai∗ (汪 凯), WANG Xianliang (王宪良), ZHU Jiazan (朱加赞), OU Daisong (欧代松), PAN Daifeng (潘代锋). System Life and Reliability Modeling of a Multiple Power Takeoffs Accessory Gearbox Transmission [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 855-866. |
[8] | LIU Kai1 (刘 凯), DANG Wei1 (党 炜), ZOU Tianji1,2∗ (邹田骥), LÜ Congmin1 (吕从民), LI Peng1,2 (李 鹏), ZHANG Haitao1 (张海涛). Reliability Evaluation of Two-Phase Degradation Process with a Fuzzy Change-Point [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 867-872. |
[9] | LÜ Qibing (吕其兵), LIU Tianyuan (刘天元), ZHANG Rong (张荣), JIANG Yanan (江亚南), XIAO Lei (肖雷), BAO Jingsong∗ (鲍劲松). Generation Approach of Human-Robot Cooperative Assembly Strategy Based on Transfer Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 602-613. |
[10] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[11] | JIANG Zhiguo (蒋志国), CHANG Qing∗ (常 青). USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 485-497. |
[12] | LU Guannan1 (卢冠男), WANG Mengling1∗ (王梦灵), FOX Tamara2, JIANG Peng3 (蒋 鹏), JIANG Fusong3 (蒋伏松). Novel Indicators for Adverse Glycemic Events Detection Analysis Based on Continuous Glucose Monitoring Neural Network Predictive Models [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 498-504. |
[13] | QIN Yichao, HUANG Limin, WANG Xiao, MA Xuewen, DUAN Wenyang, HAO Wei. Feasibility of Wave Measurement by Using a Sailing Buoy and the Artificial Neural Network Technique [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 498-505. |
[14] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[15] | YUAN Xiaoqi (袁筱祺), ZHU Lelan (朱乐兰), XU Qiongfan(徐琼凡), GAO Wei (高玮). Risk Prediction Model of Gallbladder Disease in Shanghai Middle-Aged and Elderly People Based on Neural Networks [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 153-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||