[1]HEBI S, BAYO-BANGOURA M, BAYO K, et al. Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution[J]. Journal of Solid State Electrochemistry, 2016, 20(4): 931-942.
[2]JACOB T, GODDARD W A. Water formation on Pt and Pt-based alloys: A theoretical description of a catalytic reaction[J]. Chemphyschem, 2005, 7(5): 992-1005.
[3]LIU Y, WU Y Y, LV G J, et al. Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media[J]. Electrochimica Acta, 2013,112(12): 269-278.
[4]BRAUN A, TCHERNIAC J. ber die produkte der einwirkung von acetanhydrid auf phthalamid[J]. European Journal of Inorganic Chemistry, 1907, 40 (2): 2709-2714.
[5]DE DIESBACH H, VON DER WEID E. Quelques sels complexes des o-dinitriles avec le cuivre et la pyridine[J]. Helvetica Chimica Acta, 1927, 10 (1): 886-888.
[6]KOBAYASHI N. Phthalocyanines [J]. Current Opinion in Solid State & Materials Science, 1999, 4(4): 345-353.
[7]JIANG D L, AIDA T. Photoisomerization in dendrimers by harvesting of low-energy photons[J]. Nature, 1997, 388(6641): 454-456.
[8]GE X, SUMBOJA A, WUU D, et al. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts[J]. Acs Catalysis, 2015, 5(8): 4643-4667.
[9]DU Chunmiao, LIN Haiping, LIN Bin, et al. MoS2 supported single platinum atoms and their superior catalystic activity for CO oxidation: A density functional theory study[J]. Joumal of Materials Chemistry A, 2015, 3(46): 23113-23119.
[10]YANG S, KIM J, TAK Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie, 2016, 55(6): 2058-2062.
[11]JACOB T, MULLER R P, GODDARD W A. Chemisorption of atomic oxygen on Pt(111) from DFT studies of Pt-clusters[J]. Journal of Physical Chemistry B, 2003, 107(35): 9465-9476.
[12]SACHS C, HILDEBRAND M, VOLKENING S, et al. Reaction fronts in the oxidation of hydrogen on Pt (111): Scanning tunneling microscopy experiments and reaction-diffusion modeling[J]. Journal of Chemical Physics, 2002, 116(13): 5759-5773.
[13]VLKENING S, BEDRFTIG K, JACOBI K, et al. Dual-path mechanism for catalytic oxidation of hydrogen on platinum surfaces[J]. Physical Review Letters, 1999, 83(13): 2672-2675.
[14]CHEN R, LI H, CHU D, et al. Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanie catalysts in alkaline solutions[J]. J Phys Chem C, 2009, 113(48): 20689-20697.
[15]BAKER R, WILKINSON D P, ZHANG J. Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures[J]. Electrochimica Acta, 2008, 53(23): 6906-6019.
[16]DE LILE J R, ZHOU Su. A density functional theory investigation of charge mobility in titanyl-phthalocyanines and their tailored peripherally substituted complexes[J]. ChemXpress, 2016, 9(5): 105.
[17]TANAKA A A, FIERRO C, SCHERSON D A, et al. Oxygen reduction on adsorbed iron tetrapyridinoporphyrazine[J]. Materials Chemistry and Physics, 1989, 22 (3/4): 431-456.
[18]BECK F. The redox mechanism of the chelate-catalysed oxygen cathode[J]. Journal of Applied Electrochemistry, 1977, 7(3): 239-245.
[19]SUN S, JIANG N, XIA D. Density functional theory study of the oxygen reduction reaction on metalloporphyrins and meallophthalocyanines[J]. Journal of Physical Chemistry C, 2011, 115(19): 9511-9517.
[20]ZAGAL J H. Handbook of fuel cells: Advances in electrocatalysis, materials, diagnostics and durability [M]. Hoboken, NJ: Wiley, 2003, 544.
[21]SHI Zheng, ZHANG Jiujun. Density functional theory study of transitional metal macrocyclic complexes’ dioxygen-binding abilities and their catalytic activities toward oxygen reduction reaction[J]. J Chem Phys C, 2007, 111(1): 7084-7090.
[22]SHA Y, YU T H, MERINOV B V, et al. Oxygen hydration mechanism for the oxygen reduction reaction at Pt and Pd fuel cell catalysts[J]. Journal of Physical Chemistry Letters, 2011, 2(6): 572-576. |