[1]VAN ZANTE J F, IDE R F, STEEN L E, et al. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]∥4th AIAA Atmospheric and Space Environments Conference. New Orleans: AIAA, 2012: 2933.
[2]THOMPSON G, POLITOVICH M. A numerical weather model’s ability to predict aircraft and ground icing environments[C]∥6th AIAA Atmospheric and Space Environments Conference. Atlanta: AIAA, 2014: 2066.
[3]KOLLR L E, FARZANEH M, KAREV A R. The role of droplet collision, evaporation and gravitational settling in the modeling of twophase flows under icing conditions[C]∥Proceeding of 11th International Workshop on Atmospheric Icing of Structures. Montréal: IWAIS XI, 2005.
[4]BORD S R, HAGEMEIER T, THVENIN D. Experimental investigation of dropletdroplet interactions[C]∥23rd European Conference on Liquid Atomization and Spray Systems. Berlin: Freie Universitt, 2010: 198.1198.6.
[5]Department of Transportation, Federal Aviation Administration. Federal register: Part III[R]. Washington: Federal Aviation Administration, 2014.
[6]BRAZIERSMITH P R, JENNINGS S G, LATHAM J. The interaction of falling water drops: Coalescence[C]∥Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 1972: 393408.
[7]GOTAAS C, HAVELKA P, JAKOBSEN H A, et al. Effect of viscosity on dropletdroplet collision outcome: Experimental study and numerical comparison[J]. Physics of Fluids, 2007, 19(10): 102106.
[8]ASHGRIZ N, POO J Y. Coalescence and separation in binary collisions of liquid drops[J]. Journal of Fluid Mechanics, 1990, 221: 183204.
[9]ESTRADE J P, CARENTZ H, LAVERGNE G, et al. Experimental investigation of dynamic binary collision of ethanol droplets—A model for droplet coalescence and bouncing[J]. International Journal of Heat and Fluid Flow, 1999, 20(5): 486491.
[10]BRENN G, VALKOVSKA D, DANOV K D. The formation of satellite droplets by unstable binary drop collisions[J]. Physics of Fluids, 2001, 13(9): 24632477.
[11]O’ROURKE P J, BRACCO F V. Modeling of drop interactions in thick sprays and a comparison with experiments[J]. Proceedings of the Institution of Mechanical Engineers, 1980, 9: 101106.
[12]KO G H, RYOU H S. Droplet collision processes in an interspray impingement system[J]. Journal of Aerosol Science, 2005, 36(11): 13001321.
[13]BUTTERSACK T, BAUERECKER S. Critical radius of supercooled water droplets: On the transition toward dendritic freezing[J]. The Journal of Physical Chemistry B, 2016, 120(3): 504512.
[14]JIANG Y J, UMEMURA A, LAW C K. An experimental investigation on the collision behaviour of hydrocarbon droplets[J]. Journal of Fluid Mechanics, 1992, 234: 171190.
[15]YI N, HUANG B, DONG L, et al. Temperatureinduced coalescence of colliding binary droplets on superhydrophobic surface[J]. Scientific Reports, 2014, 4: 4303.
[16]QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331: 5980.
[17]RABE C, MALET J, FEUILLEBOIS F. Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number[J]. Physics of Fluids, 2010, 22(4): 047101.
[18]KUSCHEL M, SOMMERFELD M. Investigation of droplet collisions for solutions with different solids content[J]. Experiments in Fluids, 2013, 54(2): 117.
[19]HALLETT J. The temperature dependence of the viscosity of supercooled water[J]. Proceedings of the Physical Society, 1963, 82(6): 1046.
[20]VARGAFTIK N B, VOLKOV B N, VOLJAK L D. International tables of the surface tension of water[J]. Journal of Physical and Chemical Reference Data, 1983, 12(3): 817820.
[21]PLANCHETTE C, LORENCEAU E, BRENN G. The onset of fragmentation in binary liquid drop collisions[J]. Journal of Fluid Mechanics, 2012, 702: 525.
|