[1]BECK R, RICHERT F, BOLLIG A, et al. Model predictive control of a parallel hybrid vehicle drivetrain[C]∥Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2006: 26702675.
[2]ZHU F, CHEN L, YIN C, et al. Dynamic modelling and systematic control during the mode transition for a multimode hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2013, 227(7): 10071023.
[3]KIM H, KIM J, LEE H. Mode transition control using disturbance compensation for a parallel hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225(2): 150166.
[4]ZHANG H, ZHANG Y, YIN C. Hardwareintheloop simulation of robust mode transition control for a seriesparallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 10591069.
[5]CHOW H W, CHEUNG N C. Disturbance and response time improvement of submicrometer precision linear motion system by using modified disturbance compensator and internal model reference control[J]. IEEE Transactions on Industrial Electronics, 2012, 60(1): 139150.
[6]FANG C, CAO Z, EKTESABI M M, et al. Model reference control for active driveability improvement[C]∥Proceedings of the International Conference on Modelling, Identification & Control. Melbourne, Australia: IEEE, 2015: 202206.
[7]WEN B, WANG W, XIANG C, et al. Model reference control strategy for the mode transition of electromechanical transmission[C]∥IEEE International Conference on Mechatronics and Automation. Tianjin, China: IEEE, 2014: 11081112.
[8]CHEN L, XI G, SUN J. Torque coordination control during mode transition for a seriesparallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7): 29362949.
[9]SUNDSTROM O, SOLTIC P, GUZZELLA L. A transmissionactuated energymanagement strategy[J]. IEEE Transactions on Vehicular Technology, 2010, 59(1): 8492. |