[1]AMROMIN E.Tworange scaling for tip vortex cavitation inception[J]. Ocean Engineering, 2006, 33(3): 530534.
[2]SHEN Y T, GOWING S, JESSUP S. Tip vortex cavitation inception scaling for high Reynolds number applications[J]. Journal of Fluids Engineering, 2009, 131(7): 0713016.
[3]DEHGHAN M, BASIRAT T H. Turbulence effects on the granular model of partical motion in a boundary layer flow[J]. The Canadian Journal of Chemical Engineering, 2014, 92(1): 189195.
[4]吴琼, 叶骞, 孟国香. 不同湍流模型在旋转非接触搬运器仿真中的应用和对比[J]. 上海交通大学学报, 2013,47(3):423427.
WU Qiong, YE Qian, MENG Guoxiang. Application and comparison of the different turbulent models simulation for noncontact vortex gripper[J]. Journal of Shanghai Jiao Tong University, 2013, 47(3): 423427.
[5]FRUMAN D H, DUGUE C, CERRUTTI P. Tip vortex rollup and cavitation [C]∥19th Symposium on Naval hydrodynamics. Washington, USA: National Academy Press, 1992: 633654.
[6]TURNOCK S R, PASHIAS C, ROGERS E. Flow feature identification for capture of propeller tip vortex evolution[C]∥26th Symposium on Naval Hydrodynamics. Rome, Italy: INSEAN Italian Ship Model Basin, 2006: 223240.
[7]ZHANG L X, ZHANG N, PENG X X. A review of studies of mechanism and prediction of tip vortex cavitation inception[J].Journal of Hydrodynamics, 2015, 27(4): 488495.
[8]MCCORMICK B W. A study of the minimum pressure in a trailing vortex system[EB/OL]. [20160117]. https:∥www.researchgate.net/publication/235159054_A_STUDY_OF_THE_MINIMUM_PRESSURE_IN_A_TRAILING_VORTEX_SYSTEM.
[9]BREWER W H, PARK J T. High Reynolds number boundary layer scaling on a large hydrofoil [EB/OL].[20160117]. https:∥www.researchgate.net/publication/277861720_High_Reynolds_Number_Boundary_Layer_Scaling_on_a_Large_Hydrofoil_HIFOIL. |