[1]HUANG J, WU X. HAN E H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in hightemperature alkaline environments [J]. Corrosion Science, 2010, 52(10): 34443452.
[2]ABRAHAM G J, HAMBROO R B, KAIN V, et al. Electrochemical characterization of oxide film formed at high temperature on Alloy 690 [J]. Nuclear Engineering and Design, 2012, 243(2):6975.
[3]CHEN Y Y, CHOU L B, SHIH H C. Effect of solution pH on the electrochemical polarization and stress corrosion cracking of Alloy 690 in 5M NaCl at room temperature[J]. Materials Science and Engineering: A, 2005, 396(1): 129137.
[4]HUANG J, LIU X, HAN E H, et al. Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water[J]. Corrosion Science,2011, 53(10): 32543261.
[5]SUN H, WU X, HAN E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water[J]. Corrosion Science, 2012, 59: 334342.
[6]HUANG J, WU X, HAN E H. Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments[J]. Corrosion Science, 2009, 51(12): 29762982.
[7]BETOVA I, BOJINOV M, KARASTOYANOV V, et al. Effect of water chemistry on the oxide film on Alloy 690 during simulated hot functional testing of a pressurised water reactor[J]. Corrosion Science,2012, 58(5):2032.
[8]GREELEY R S, SMITH Jr W T, STOUGHTON R W, et al. Electromotive force study in aqueous solutions at elevated temperatures. I.The standard potential of the silversilver chlotide electrode[J]. The Journal of Physical Chemistry,1960, 64(5):652657.
[9]ASTM G103. Standard practice for preparing, cleaning, and evaluating corrosion test specimens[S]. 2003.
[10]MACK J, SAJDL P, KUCˇERA P, et al. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water[J]. Electrochimica Acta, 2006, 51(17): 35663577.
[11]BAZAN J C, ARVIA A J. The diffusion of ferroand ferricyanide ions in aqueous solutions of sodium hydroxide[J]. Electrochimica Acta,1965,10(10):10251032.
[12]ROBERTSON J. The mechanism of high temperature aqueous corrosion of steel[J]. Corrosion Science,1989, 29(11):12751291.
[13]EVANS U R. Mechanism of rusting[J]. Corrosion Science, 1969, 9(11): 813821.
[14]ZIEMNIAK S E, HANSON M. Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water[J]. Corrosion Science,2006,48(2):498521.
[15]HERMAS A A, SALAM M A, ALJUAID S S, et al. Electrosynthesis and protection role of polyaniline—polvinylalcohol composite on stainless steel[J]. Progress in Organic Coatings, 2014, 77(2): 403411.
[16]LIU X, WU X, HAN E H. Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water[J]. Corrosion Science, 2012, 65(12):136144.
[17]McIntyre N S, Cook M G. Xray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper[J]. Analytical Chemistry, 1975, 47(13): 22082213.
[18]MACHET A, GALTAYRIES A, MARCUS P, et al. XPS study of oxides formed on nickelbase alloys in hightemperature and highpressure water[J]. Surface and Interface Analysis, 2002, 34(1): 197200.
[19]ZIEMNIAK S E, HANSON M. Corrosion behavior of NiCrMo Alloy 625 in high temperature, hydrogenated water[J]. Corrosion Science,2003,45(7):15951618.
[20]ZIEMNIAK S E, HANSON M, SANDER P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science, 2008, 50(9): 24652477.
[21]SUN H, WU X, HAN E H. Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625[J]. Corrosion Science,2009, 51(11): 25652572.
[22]SUN H, WU X, HAN E H. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution[J]. Corrosion Science, 2009, 51(12): 28402847.
[23]FENG Z, CHENG X, DONG C, et al. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel[J]. Journal of Nuclear Materials, 2010, 407(3): 171177. |