Journal of Shanghai Jiaotong University ›› 2019, Vol. 53 ›› Issue (2): 239-246.doi: 10.16183/j.cnki.jsjtu.2019.02.016
Previous Articles Next Articles
MA Zhihong,GONG Liang,LIN Ke,MAO Yuhan,WU Wei,LIU Chengliang
Online:
2019-02-28
Published:
2019-02-28
CLC Number:
MA Zhihong,GONG Liang,LIN Ke,MAO Yuhan,WU Wei,LIU Chengliang. Estimation of Panicle Seed Number Based on Panicle Geometric Pattern Recognition[J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 239-246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.02.016
[1] | REBOLLEDO M C, PEA A L, JORGE D, et al. Combining image analysis, genome wide association studies and different field trials to reveal stable gene-tic regions related to panicle architecture and the number of spikelets per panicle in rice[J]. Frontiers in Plant Science, 2016, 7: 1384. |
[2] | WENG X, WANG L, WANG J, et al. Grain number, plant height, and heading date7 is a central re-gulator of growth, development, and stress response[J]. Plant Physiology, 2014, 164(2): 735. |
[3] | CROWELL S, FALCAO A X, SHAH A, et al. High-resolution inflorescence phenotyping using a novel image-analysis pipeline, panorama[J]. Plant Physiology, 2014, 165(2): 479-495. |
[4] | HUANG C L, YANG W N, DUAN L F, et al. Rice panicle length measuring system based on dual-camera imaging[J]. Computers & Electronics in Agriculture, 2013, 98: 158-165. |
[5] | GUO W, FUKATSU T, NINOMIYA S. Automated characterization of flowering dynamics in rice using field-acquired time-series rgb images[J]. Plant me-thods, 2015, 11(1): 7. |
[6] | MA Z, MAO Y, GONG L, et al. Smartphone-based visual measurement and portable instrumentation for crop seed phenotyping[J]. Ifac Papersonline, 2016, 49(16): 259-264. |
[7] | GRANIER C, AGUIRREZABAL L, CHENV K, et al. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensilivity to water deficit[J]. New Phytologist, 2006, 169(3): 623-635. |
[8] | ADAGALE S S, PAWAR S S. Image segmentation using PCNN and template matching for blood cell counting[C]//IEEE International Conference on Computational Intelligence and Computing Research. Madurai: IEEE, 2013: 1-5. |
[9] | 李小龙, 马占鸿, 孙振宇, 等.基于图像处理的小麦条锈病菌夏孢子模拟捕捉的自动计数[J]. 农业工程学报, 2013, 29(2): 199-206. |
LI Xiaolong, MA Zhanhong, SUN Zhenyu, et al. Automatic counting for trapped urediospores of Puccinia striiformis f. sp. tritici based on image processing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 199-206. | |
[10] | ALTAM F, ADAM H, ANJOS A D, et al. P-TRAP: A panicle trait phenotyping tool[J]. Bmc Plant Biology, 2013, 13(1): 122. |
[11] | 许杰, 周子力, 潘大宇, 等. 水稻穗部籽粒参数快速无损获取方法研究[J]. 计算机工程与应用, 2017, 53(8): 203-208. |
XU Jie, ZHOU Zili, PAN Dayu, et al. Study on fast and nondestructive method of rice grain parameters acquisition of rice panicle[J]. Computer Engineering and Applications, 2017, 53(8): 203-208. | |
[12] | 赵三琴, 李毅念, 丁为民, 等.稻穗结构图像特征与籽粒数相关关系分析[J]. 农业机械学报, 2014, 45(12): 323-328. |
ZHAO Sanqin, LI Yinian, DING Weimin, et al. Relative analysis between image characteristics of panicle structure and spikelet number[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 323-328. | |
[13] | SCHARR H, MINERVINI M, KLUKAS C, et al. Leaf segmentation in plant phenotyping: A collation study[J]. Machine Vision & Applications, 2016, 27(4): 1-22. |
[14] | NAVARRO P J, FERNANDO P, JULIA W, et al. Machine learning and computer vision system for phenotype data acquisition and analysis in plants[J]. Sensors, 2016, 16(5): 641. |
[15] | NASERI M, HEIDARI S, GHEIBI R, et al. A novel quantum binary images thinning algorithm: A quantum version of the Hilditch’s algorithm[J]. Optik-International Journal for Light and Electron Optics, 2017, 131: 678-686. |
[16] | MAJI S, BERG A C, MALIK J. Efficient classification for additive kernel svms[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(1): 66-77. |
[17] | YUAN M S, YANG Z J, HUANG G Z, et al. Feature selection by maximizing correlation information for integrated high-dimensional protein data[J]. Pattern Recognition Letters, 2017, 92: 17-24. |
[1] | ZHU Dong, JIANG Pingping, YAN Guozheng, WANG Zhiwu, HAN Ding, ZHAO Kai, HUA Fangfang, YAO Shengjian, DING Zifan, ZHOU Zerun. Defecation Perception Reconstruction of an Artificial Anal Sphincter System [J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 771-777. |
[2] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[3] | WANG Jiangzhuo,XU Wencong,LI Jianxun,HE Fengshou,CAO Lanying,MIAO Lifeng. Dot-Track Association Algorithm for Radar Electronic Support Measurement Systems Based on Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1091-1099. |
[4] | U Feng,FAN Chunju,XU Xunjian,LI Li,NI Jiayun. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1388-1395. |
[5] | GONG Pengwei1,FEI Yanqiong1, 3, SONG Libo2. Road Recognition Method of WheelTracked Robot Based on#br# Multisensor Information Fusion [J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 398-. |
[6] | JIAO Xuejun,ZHANG Zhen,JIANG Jin,WANG Chunhui,YANG Hanjun,XU Fenggang,CAO Yong,FU Jiahao. The Brain-Computer Interface Using Functional Near-Infrared Spectroscopy [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1456-1463. |
[7] | WANG Xiuqing1,HOU Zengguang2,ZENG Hui3,L Feng1,PAN Shiying1. Fault Diagnosis of Robots Based on Multi-Sensor Information Fusion [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 793-798. |
[8] | KUMAR Manoj1, SAMUI Pijush2*. Analysis of Epimetamorphic Rock Slopes Using Soft Computing [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(3): 274-278. |
[9] | WANG Jiajing1,2,ZHANG Zhusheng1,HE Weiping1. Identification of Tools with Failure Barcode Based on Multi-Information Fusion [J]. Journal of Shanghai Jiaotong University, 2014, 48(12): 1675-1680. |
[10] | YU Lu1,2,QIAO Ruiping2,HU Yuping2,ZHAO Jing1,2. A Video Shot Segmentation Method Based on a Two-Stage Support Vector Machine Classifier [J]. Journal of Shanghai Jiaotong University, 2014, 48(05): 668-673. |
[11] | ZHANG Yu-jina (张玉金), LI Sheng-honga* (李生红), WANG Shi-linb (王士林). Detecting Shifted Double JPEG Compression Tampering Utilizing Both Intra-Block and Inter-Block Correlations [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(1): 7-16. |
[12] | CHEN Gu-Chun-a, SU Bo-b, WANG Shi-Lin-b, LI Sheng-Hong-a. Blind Detection of Splicing Image Based on Gray Level Co-occurrence Matrix of Image DCT Domain [J]. Journal of Shanghai Jiaotong University, 2011, 45(10): 1547-1551. |
[13] | HAN Hua-1, GU Bo-1, REN Neng-2. Fault Diagnosis for Refrigeration Systems Based on Principal Component Analysis and Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2011, 45(09): 1355-1361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||