[1]DINH Q V, GLOWINSKI R, PRIAUX J, et al. On the coupling of viscous and inviscid models for incompressible fluid flows via domain decomposition[C]//First International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia: SIAM, 1988: 350369.
[2]HAMILTON J A.Viscousinviscid matching for wavebody interaction problems[D]. Berkeley: University of California, 2002.
[3]ZHANG Yi, PESZYNSKA M, YIM S C. Coupling of viscous and potential flow models with free surface for near and far field wave propagation[J]. International Journal of Numerical Analysis and Modeling, Series B, 2013,3(3): 256282.
[4]KRISTIANSEN T, FALTINSEN O M. Gap resonance analyzed by a new domaindecomposition method combining potential and viscous flow[J]. Applied Ocean Research, 2012,34:198208.
[5]KUNHO K, SIRVIENTE A I, BECK R F. The complementary RANS equations for the simulation of viscous flows [J]. International Journal for Numerical Methods in Fluids, 2005,48(2):199229.
[6]HELMHOLTZ H. On integrals of the hydrodynamical equations, which express vortexmotion[J]. Nelin.dinam, 2006, 33:473507.
[7]SHAO Yanlin. Numerical potentialflow Studies on weaklynonlinear wavebody interactions with/without small Forward Speeds[D]. Norway: Norwegian University of Science and Technology, 2010:4344.
[8]STLBERG E, BRGER A, LTSTEDT P, et al. High order accurate solution of flow past a circular cylinder[J]. Journal of Scientific Computing, 2006, 27(13):431441.
[9]POSDZIECH O, GRUNDMANN R. A systematic approach to the numerical calculation of fundamental quantities of the twodimensional flow over a circular cylinder[J]. Journal of Fluids and Structures, 2007,23(3):479499.
[10]KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at Re=3 900[J]. Physics of Fluids, 2000,12(2):403417. |