[1]Papadakis G, Ioannou E, Niederée C, et al. Eliminating the redundancy in blockingbased entity resolution methods[C]∥ Glen Newton. Proceedings of the 11th annual international ACM/IEEE joint conference on Digital libraries. Ottawa:ACM,2011:8594.
[2]Papadakis G, Ioannou E, Niederée C, et al. Efficient entity resolution for large heterogeneous information spaces[C]∥ Irwin King. Proceedings of the fourth ACM international conference on Web search and data mining. Hong Kong:ACM,2011:535544.
[3]Papadakis G, Ioannou E, Niederée C, et al. To compare or not to compare: making entity resolution more efficient[C]∥ Roberto De Virgilio, Fausto Giunchiglia, Letizia Tanca. Proceedings of the International Workshop on Semantic Web Information Management. Athens:ACM,2011:3.
[4]Lange D, Naumann F. Efficient similarity search: arbitrary similarity measures, arbitrary composition[C]∥ Bettina Berendt, Arjen de Vries, Wenfei Fan. Proceedings of the 20th ACM international conference on Information and knowledge management. Glasgow:ACM,2011:16791688.
[5]Heath T, Bizer C. Linked data: Evolving the web into a global data space[J]. Synthesis lectures on the semantic web: theory and technology,2011,1(1):1136.
[6]Paradies M, Malaika S, Siméon J, et al. Entity matching for semistructured data in the Cloud[C]∥ Sascha Ossowski, Rey Juan Carlos. Proceedings of the 27th Annual ACM Symposium on Applied Computing. Trento:ACM,2012:453458.
[7]Snae C. A comparison and analysis of name matching algorithms[J]. International Journal of Applied Science, Engineering and Technology, 2007,4(1):252257.
[8]Wang J, Li G, Yu J X, et al. Entity matching: how similar is similar[J]. Proceedings of the VLDB Endowment,2011,4(10):622633.
[9]Christen P. Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detection[M]. New York:Springer Science & Business Media,2012.
[10]Naumann F, Herschel M. An introduction to duplicate detection[J]. Synthesis Lectures on Data Management,2010,2(1):187.
[11]Dorneles C F, Gonalves R, Ronaldo dos Santos Mello. Approximate data instance matching: a survey[J]. Knowledge and Information Systems,2011,27(1):121.
[12]Abril D, NavarroArribas G, Torra V. Improving record linkage with supervised learning for disclosure risk assessment[J]. Information Fusion, 2012,13(4):274284.
[13]Mannila H, Rih K J. Algorithms for inferring functional dependencies from relations[J]. Data & Knowledge Engineering,1994,12(1):8399.
[14]Huhtala Y, Krkkinen J, Porkka P, et al. TANE: An efficient algorithm for discovering functional and approximate dependencies[J]. The Computer Journal,1999,42(2):100111.
[15]张守志,施伯乐. 一种发现函数依赖集的方法及应用[J]. 软件学报,2003,14(10):16921696.
ZHANG Shouzhi, SHI Bole. A method for discovering functional dependencies and its application[J]. Journal of Software,2003,14(10):16921696.
[16]Huhtala Y, Karkkainen J, Porkka P, et al. Efficient discovery of functional and approximate dependencies using partitions[C]∥ Proceedings of 14th International Conference on Data Engineering. Orlando:IEEE,1998:392401.
[17]Weis M, Naumann F. Detecting duplicate objects in XML documents[C]∥ Felix Naumann, Monica Scannapieco. Proceedings of the 2004 International Workshop on Information quality in information systems. Paris:ACM,2004:1019.
[18]Benjelloun O, GarciaMolina H, Gong H, et al. Dswoosh: A family of algorithms for generic, distributed entity resolution[C]∥ Proceedings of 27th International Conference on Distributed Computing Systems. Toronto:IEEE,2007:3737. |