Journal of Shanghai Jiaotong University ›› 2015, Vol. 49 ›› Issue (06): 737-742.
• Automation Technique, Computer Technology • Next Articles
HU Jing1,WANG Chunxia2,WEN Chenglin2,LI Ping1
Received:
2015-03-15
Online:
2015-06-29
Published:
2015-06-29
CLC Number:
HU Jing1,WANG Chunxia2,WEN Chenglin2,LI Ping1. Quality Monitoring of Nonlinear Process Based on Kernel Projection to Quality Latent Structure[J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 737-742.
[1]周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术[M]. 北京:科学出版社, 2011:161170.[2]周东华, 叶银忠. 现代故障诊断与容错控制[M]. 北京:清华大学出版社, 2000:2444.[3]Jolliffe I T. Principal component analysis, Second Edition [M]. London: Springer, 2002:1012.[4]Qin S J. Survey on datadriven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2):220234.[5]Wen C L, Zhou F N, Wen C B, et al. An extended multiscale principal component analysis method and application in anomaly detection [J].Chinese Journal of Electronics, 2012, 21(3):471476.[6]Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks [J]. Computers and Chemical Engineering, 1992, 16(4):379391.[7]Rosipal R, Trejo L J. Kernel parital least squares regression in reproducing kernel hibert space [J]. Journal of Machine Learning Research, 2001(2):97123.[8]胡益, 王丽, 马贺贺, 等. 基于核PLS方法的非线性过程在线监控 [J]. 化工学报, 2011, 62(9):25552561.HU Yi, WANG Li, MA Hehe, et al. Online nonlinear process monitoring using kernel partial least squares [J]. CIESC Journal, 2011, 62(9):25552561.[9]Peng K X, Zhang K, Li G. Qualityrelated process monitoring based on total kernel PLS model and its industrial application [J]. Mathematical Problems in Engineering, 2013:114.[10]Zhang Y W, Sun R R, Fan Y P. Fault diagnosis of nonlinear process based on KCPLS reconstruction [J]. Chemometrics and Intelligent Laboratory Systems, 2015, 140:4960.[11]Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring [J]. AIChE Journal, 2010, 56(1):168178.[12]Zhao C H, Sun Y X. The multispace generalization of total projection to latent structures (MsTPLS) and its application to online process monitoring [C]∥2013 10th IEEE International Conference on ICCA. USA: IEEE, 2013: 14411446.[13]Qin S J, Zheng Y Y. Qualityrelevant and processrelevant fault monitoring with concurrent projection to latent structures [J]. AIChE Journal, 2013, 59(2):496504.[14]Hu J, Wen C L, Li P, et al. Direct projection to latent variable space for fault detection [J]. Journal of the Franklin Institute, 2014, 351(3):12261250.[15]Yin S, Ding X S, Zhang P, et al. Study on modifications of PLS approach for process monitoring [C]∥Proc of 18th IFAC World Congress. Milano, Italy: IFAC, 2011.[16]Li G, Qin S J, Zhou D H. Geometric properties of partial least squares for process monitoring [J]. Automatica, 2010, 46(1):204210.[17]Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch process [J]. Technometrics, 1995, 37:4159.[18]Downs J J, Vogel E F. A plantwide industrial process control problem [J]. Computer and Chemical Enginerring, 1993, 17(3):245255.[19]Chiang L H, Russell E, Braaz R D. Fault detection and diagnosis in industrial systems [M]. London: Springer, 2001. |
[1] | HUANG Jian, YANG Xu. Online Weighted Slow Feature Analysis Based Fault Detection Algorithm [J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1142-1150. |
[2] | WANG Limin1,2,ZHOU Donghua1,ZHU Chengjie2. Composite Iterative Learning FaultTolerant Guaranteed Cost Controller Design for Batch Process [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 743-750. |
[3] | QIN Liguoa,HE Xiaoa,b,ZHOU Donghuaa,b. A Fault Estimation Method Based on Robust Residual Generators [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 768-774. |
[4] | SAHNG Jun,CHEN Maoyin,ZHOU Donghua. Incipient Fault Detection Using Transformed Component Statistical Analysis [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 799-805. |
[5] | CONG Ya,GE Zhiqiang,SONG Zhihuan. Multi-Rate Principle Component Analysis for Process Monitoring [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 762-767. |
[6] | CHU Zhenzhong1,ZHU Daqi1,ZHANG Mingjun2. Terminal Sliding Mode Observer Based Fault Reconstruction for Underwater Vehicle Thruster [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 837-841. |
[7] | LI Xiongjie1,2,ZHOU Donghua2. Fault Diagnosis Based on Particle Filter for Hybrid System [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 849-854. |
[8] | ZHAO Xiaoqiang1,2,QIAN Junxiu1. A Fault Diagnosis Algorithm for Chemical Process Based on Dual-Kernel Independent Component Analysis [J]. Journal of Shanghai Jiaotong University, 2014, 48(07): 1004-1008. |
[9] |
CAI Lianfang,TIAN Xuemin,ZHANG Ni.
A Nonlinear Dynamic Process Fault Detection Method Based on
Kernel State Space Independent Component Analysis
|
[10] | WANG Tian-Zhen-1, 2 , GAO Di-Ju-1, LIU Ping-1, TANG Tian-Hao-1 . A Fault Detection Model Based on Dynamic Limit under Non-periodic Non-steady Conditions [J]. Journal of Shanghai Jiaotong University, 2012, 46(04): 607-612. |
[11] | GUO Hongjie1,XU Chunling2,SHI Hongbo1. Multimode Process Monitoring Based on Local Neighborhood Standardization Strategy [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 868-875. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||